Basic Optimization with SuiteScript 2.1

written by Eric T Grubaugh

part of the "SuiteScript by Example" » series

published by Stoic Software, LLC

https://stoic.software/
https://suitescriptbyexample.com/
https://stoic.software/

Basic Optimization with SuiteScript 2.1

by Eric T Grubaugh

Copyright (c) 2017- Stoic Software, LLC. All rights reserved.

Published by Stoic Software, LLC, PO Box 129, Wellington, CO 80549.

NetSuite and SuiteScript are registered trademarks of Oracle and/or its affiliates. Other

names may be trademarks of their respective owners.

Neither the author nor the publisher have any affiliation with Oracle Corporation or
NetSuite, Inc. This product is neither endorsed nor sponsored by Oracle Corporation or
NetSuite, Inc.

Using Code Samples

This book is here to help you learn. In general, you may use the code presented herein in
your own code. You do not need to contact me unless you are reproducing or redistributing
large portions of the code.

| appreciate, but do not require, attribution. An attribution usually includes the title,
author, and publisher:

“Basic Optimization with SuiteScript 2.1, by Eric T Grubaugh (Stoic Software, LLC).
Copyright 2017 Stoic Software, LLC."

https://stoic.software/
https://stoic.software/

Introduction

““Error: SCRIPT_EXECUTION_USAGE LIMIT EXCEEDED "

How many times has this error ruined your day?

Basic Optimization with SuiteScript 2.1 is intended to provide you with practical examples
for reducing governance usage, reducing execution time, and increasing performance in

your SuiteScript.
In this cookbook, you'll see advice on:

Minimizing Log Entries

Leveraging Inline Editing

Consolidating Lookups and Inline Edits

Eliminating Loads or Lookups on Associated Records
Eliminating Repeated Lookups of Same Type
Avoiding Searches or Queries from Loops

Reducing Repetition in Common SuiteScript Tasks

Conventions in this Book

All code examples are written in SuiteScript 2.1.

To see how to test SuiteScript in your browser's console, watch my @ How-To video.

https://www.youtube.com/watch?v=ZAN8clhKxIw&sub_confirmation=1
https://www.youtube.com/watch?v=ZAN8clhKxIw&sub_confirmation=1

Minimize the Number of Log Entries

Logging is an extremely useful tool for tracing and debugging the execution of a script,
but it can be detrimental to the performance of your scripts.

Years ago, | was working on a team building a SuiteApp, and we had a Scheduled Script
responsible for bulk processing records. This script had a significant amount of logic in it,
and could go through several different paths, so we had a correspondingly large amount of
logging in the script. The average execution time for this script in Production was
consistently around “45° minutes, but we had always attributed that to the amount of
records being processed and the various logic paths the script needed to follow.

One day, as an experiment, | suggested we change the Log Level of the script from
"DEBUG" tO "ERROR'. This had absolutely no effect on performance. Later, one of our
developers commented out a/l logging done by the script. We immediately saw the

execution time drop to around 7 minutes.

There are several patterns to watch out for that can help you minimize the impact of
logging on your performance while maintaining its usefulness to your debugging efforts.
While you may not necessarily see the drastic 85% reduction in execution time that we
happened to see, it is a good practice to use logging efficiently, rather than pervasively.

Condense multiple similar log entries into a single entry:

Each log entry your scripts write creates an instance of a Script Execution Log record, so
while logging doesn't use up any governance units, it does carry about the same
performance penalty of creating an instance of a custom record.

Changing the Log Level on a Script Deployment has no effect on this penalty because the
request is always sent to the server before the Log Level is checked. This request forms
the majority of the overhead in the log functions.

Because of these factors, we want to minimize the amount of calls we make to the “log"
module. We can do this by taking advantage of the fact that NetSuite will automatically
invoke “JsON.stringify()" on any Object passed in to the “details" parameter.

Turn this:

log.debug({
title: 'Name',
details: record.getValue({ 'fieldId': 'name' })
1)
log.debug({
title: 'Sales Rep',
details: record.getValue({ 'fieldId': 'salesrep' })
1)
log.debug({
title: 'Customer',
details: record.getValue({ 'fieldId': 'entity' })
1)
log.debug({
title: 'Location',
details: record.getValue({ 'fieldId': 'location' })

1)

into this:

const data = {
name: record.getValue({ 'fieldId': 'name' }),
salesRep: record.getValue({ 'fieldId': 'salesrep' 1}),
customer: record.getValue({ 'fieldId': 'entity' }),
location: record.getValue({ 'fieldId': 'location' })

}
log.debug({ title: 'Record Data:', details: data })

In Client Scripts, use Developer Console logs instead of

NetSuite Execution Logs

Writing your Client Script's logs to the Developer Console is much faster than writing

NetSuite Execution Logs as there is no server request to make and no log record to create.

No matter what the Log Level set on your Script Deployment, NetSuite will send an HTTP
request for each NetSuite log you try to write from a Client Script. To avoid the overhead

of all these requests, it's best to leverage console logging for your Client Scripts.

Turn this:

log.debug({
title: 'Sales Rep:',
details: record.getValue({ fieldId: 'salesrep' })

1)

into this:

console.log(Sales Rep: ${record.getValue({ fieldId: 'salesrep' })})

“A Be conscious not to expose any sensitive data in your console logs. Any user who
knows how to open the browser console will be able to see your logs. Never log secure

information like passwords or tokens to the console.”

Prefer Inline Editing over Loading
and Saving

Loading and submitting a record is one of the most expensive tasks - in terms of both
governance and time - that you can perform in SuiteScript It is crucial to understand that

this is not your only option for editing existing records.

When you only need to edit the body fields of a record, you can leverage @inline editing

using the “record.submitFields™ method » from the “N/record” module
This has several advantages:

“submitFields uses fewer governance units than “load() + save()".

“submitFields™ will generally execute faster because there are likely to be fewer User
Event Scripts and Workflows responding to the “XEDIT" event it fires.

“submitFields™ iSs much more concise than repeated “setvalue()" calls.

Turn this:

rec = record.load({
: record.Type.EMPLOYEE,
'123'

.setValue({
'firstname',
'"Eric'

.setValue({
'middlename’,
ITI

.setValue({
'lastname',
'Grubaugh'

.setValue ({
'title',
'SuiteScript Strategist'

.save()

into this:

https://www.youtube.com/watch?v=dAovmP3OwiE&sub_confirmation=1
https://www.youtube.com/watch?v=dAovmP3OwiE&sub_confirmation=1
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4267283788.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4267255811.html

record.submitFields({
: record.Type.EMPLOYEE,
Vi23Y,
St

'"Eric',
|Tl
v 4
'Grubaugh',
"NetSuite Developer Advisor'

“submitFields" also contains some options that enable it to run faster as well:

“enablesourcing” determines whether g sourcing will be performed on the updated
record. This defaults to “true”, so sourcing is on by default.

“ignoreMandatory™ determines whether mandatory field validation is performed on the
updated record. This defaults to “false*, so mandatory field validation is performed by
default.

You can speed up the submission process further by disabling both of these options when
it makes sense to do so. You pass them in an “options™ parameter, like so:

record.submitFields({
: record.Type.EMPLOYEE,
123",
P {
'"Eric',
|Tl
¢ 4
'Grubaugh',

"NetSuite Developer Advisor'

P Ao
. false,
: true

There are a few limitations with “record.submitFields" to be aware of:

You cannot use “submitFields™ to modify fields in a sublist.
You cannot use “submitFields" to modify fields on a subrecord

Not all body fields support inline editing. See the “nlapiSubmitField" column of the
Records Browser » to know whether a specific field supports inline editing. If you use
inline editing on a field that doesn't support it, NetSuite will still execute the function
properly, but behind the scenes it will load and submit the entire record, thus utilizing
more governance and time.

https://www.youtube.com/watch?v=2mYdf-AnmFk
https://www.youtube.com/watch?v=2mYdf-AnmFk
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4675625458.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2023_2/script/record/account.html

Note that “submitFields" will fire an “XEDIT" Event type », whereas “load" and “save® will
fire a "viEW" Event followed by an "EDIT" Event. Keep this in mind if you need other Scripts
and Workflows to respond to your “submitFields" call.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4407992596.html

Consolidate Lookups or Inline Edits
of the Same Record

Both the Lookup and Inline Edit functionality of SuiteScript support working with multiple
fields in a single call, but | often see this feature overlooked. If a script is running multiple
Lookups or Inline Edits of the same record, then it is utilizing far more governance and

execution time than it should.

Turn this:

orderCustomer = search.lookupFields({
: search.Type.SALES_ORDER,
gl

'entity'

orderRep = search.lookupFields({
: search.Type.SALES_ORDER,
1z

'salesrep'

orderLocation = search.lookupFields({
: search.Type.SALES_ORDER,
'123"',

'"location'

into this:

orderData = search.lookupFields({
: search.Type.SALES_ ORDER,
V1vgY

['entity', 'salesrep', 'location']

Eliminate Multiple Lookups of
Associated Records

Another oft-overlooked feature of Lookups is their support of joined fields. | will often see
the results of Lookups from one record used to lookup data on a related record. This is not
necessary. When you need body-field data from a related record, you can utilize the join

syntax supported by the Lookup functionality.

Turn this:

salesRepId = search.lookupFields({
: search.Type.SALES_ORDER,
gl
'salesrep’
}).salesrep[0].value

salesRepEmail = search.lookupFields({
: search.Type.EMPLOYEE,
: salesRepId,
'email'
}).email

into this:

salesRepEmail = search.lookupFields({
: search.Type.SALES_ORDER,

iz,
'salesrep.email’
})['salesrep.email']

Eliminate Repeated Lookups of the
Same Record Type

SuiteScript's Lookup functionality provides us with a quick way to retrieve body field data
from a specific record. Often, you will need to look up the same fields from different
records of the same type; for instance, you may need to retrieve the web store description

for all items on a Sales Order.

Behind the scenes, a Lookup is a Search that filters on record type and a specific internal
ID. If you are repeatedly performing a Lookup on records of the same type, you can

instead run a single Search to get all the data at once.

With any more than a handful of repeated Lookups, the Search will quickly break even,

using less governance and taking less time than the repeated Lookups.

Turn this:

itemCount = rec.getlLineCount({ : 'item' })
i=0; i < itemCount; i++) {
itemDescription = search.lookupFields({
: search.Type.ITEM,
! rec.getSublistValue({
'item',
'item',

1)

'storedetaileddescription’
}) .storedetaileddescription

into this:

itemCount = rec.getlLineCount({ : 'item' })
itemIds = [...Array(itemCount)].map((n, line) => rec.getSublistValue({
'"item',
'item',

itemResults = search.create({
search.Type.ITEM,
[['internalid', 'anyof',6 itemIds]],
['storedetaileddescription']

1) .run()

itemResults.each(

By replacing the repeated Lookups with a single Search, we collect all the necessary data
in one place, and we are utilizing less governance and time if there are more than a few
items. These savings in governance and time will more than make up for the penalty we
incur from an additional loop to process the search results.

Avoid Searching or Querying from a
Loop

Turn this:

const lineCount = salesOrder.getLineCount(
for (let 1 = 0; 1 < lineCount; i++) {
let itemId = salesOrder.getSublistValue(
let results = search.create({

filters: [

['internalid', search.Operator.ANYOF, itemId], 'AND',

}).run().each(
}

into this:

const itemIds = []
const lineCount = salesOrder.getLineCount({ sublistId: 'item' })

for (let 1 = 0; i1 < lineCount; i++) {
let itemId = salesOrder.getSublistValue({
sublistId: 'item',
fieldId: 'item',
line: i
1)
itemIds.push(itemId)

}

let results = search.create({
type: 'item',
filters: [

['internalid', search.Operator.ANYOF, itemIds], 'AND'

}).run().each(

The same approach applies if it's a Query inside your loop instead of a Search.

Reduce Repetition

While they won't improve the performance of your script, there are also more concise
ways to express many of the common SuiteScript tasks we do. Being more concise without
sacrificing legibility of your code will often improve the developer experience and reduce
the cognitive overhead of reading and maintaining it.

Retrieval of Sublist Values

The retrieval of sublist values from every line is one common task, as we do for the

“itemIds® in the previous example.

A pattern | like to follow for populating data structures from sublists goes something like:

lineCount = salesOrder.getLineCount({

itemIds = [...Array(lineCount)]

.map((n, line) => salesOrder.getSublistValue({

'item',
'item',

“Array(lineCount) " creates an Array filled with “linecount™ number of empty slots ~.

Spreading ~» the Array converts the empty slots into “undefined" elements.

There is a significant difference ~» in how different Array methods handle empty values

versus how they handle “undefined® or “null" values, and it's worth a read to understand.

For our purposes here, suffice it to say that “map()" never visits an empty element, but
does visit an “undefined® one, so we use ... to convert empty to “undefined" first, then

“map” over the result.

You could use the same approach to retrieve multiple values from each sublist line instead

rather than only one.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Indexed_collections#sparse_arrays
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array#array_methods_and_empty_slots

Reusing Repeated Function Parameters

Many SuiteScript API methods share multiple common parameter names that get repeated

over and over, especially when reading or populating records.

If you do not like the repetition of parameters like “sublistId® and “1line", you can store
those as objects and take advantage of the spread (*...") operator:

itemSublist = { : 'item' }
lineCount = salesOrder.getLineCount({ ...itemSublist })

itemData = [...Array(lineCount)]
.map((n, line) => {

itemLine = { ...itemSublist, line }
{
: salesOrder.getSublistValue({ ...itemLine, : 'item' }),
: salesOrder.getSublistValue({ ...itemLine, : 'quantity' }),

: salesOrder.getSublistValue({ ...itemLine, : 'amount' })

Recommendations and Resources

NetSuite Help

NetSuite Help is the most definitive reference for SuiteScript and all of its capabilities. |
recommend studying the following articles and any related sub-articles:

Optimizing_SuiteScript Performance »~

Setting_Script Execution Log Levels ~

Governance on Script Logging »

search.lookupFields(options) »

record.submitFields(options) »

SuiteScript Videos and Articles

Working_with Records in SuiteScript

XEDIT Events

@ Field Lookups in SuiteScript 2.0

@ Inline Editing_in SuiteScript 2.0 video

Inline Editing_in SuiteScript 2.0 article

Inline Editing_Dropdown Fields

@ Logging_in SuiteScript 2.0

© NetSuite's Governance System

Browser Developer Console References

Chrome ~
Firefox »

Safari »

The Records Browser

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4460387617.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/chapter_N2997347.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_N3352137.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4345776651.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4267283788.html
https://stoic.software/articles/3-records-in-ss2/
https://stoic.software/articles/inline-editings-xedit-events/
https://www.youtube.com/watch?v=_fs2thUdEmQ
https://www.youtube.com/watch?v=_fs2thUdEmQ
https://www.youtube.com/watch?v=dAovmP3OwiE
https://www.youtube.com/watch?v=dAovmP3OwiE
https://stoic.software/articles/6-inline-editing-in-ss2/
https://stoic.software/articles/this-rabbit-hole-goes-even-deeper/
https://www.youtube.com/watch?v=bEVTEyQ-pgc&sub_confirmation=1
https://www.youtube.com/watch?v=bEVTEyQ-pgc&sub_confirmation=1
https://www.youtube.com/watch?v=RTRim5Ed8Yo&sub_confirmation=1
https://www.youtube.com/watch?v=RTRim5Ed8Yo&sub_confirmation=1
https://developers.google.com/web/tools/chrome-devtools/open
https://developer.mozilla.org/en-US/docs/Tools/Web_Console
https://support.apple.com/guide/safari/use-the-developer-tools-in-the-develop-menu-sfri20948/mac

The Records Browser ~ is an absolutely crucial tool for creating effective searches. There is

a new version of the Records Browser for every version of NetSuite. The 2023.2 version
can be found in NetSuite Help ~.

If you are unfamiliar with the Records Browser, see SuiteScript Records Browser ~ in the

Help documentation and my tutorial.

Mozilla Developer Network

SuiteScript is a library on top of JavaScript, and the best JavaScript reference manual is the
Mozilla Developer Network ~.

While not related specifically to NetSuite, this site is an excellent source of JavaScript
reference material, examples, and tutorials.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2023_2/script/record/account.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2023_2/script/record/account.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_1527577879.html
https://stoic.software/effective-suitescript/records-browser/
https://developer.mozilla.org/

About the Author

My name is B Eric T Grubaugh. | run the Sustainable SuiteScript community for NetSuite

developers. | founded Stoic Software in 2016 to help others lead successful, sustainable
careers as NetSuite developers.

The "Sustainable SuiteScript" Community

We are a small community of NetSuite developers who want to deepen their technical
skills, expand their professional network, and raise the bar for SuiteScript development.
Join us today.

Questions, Comments, Corrections

If you have any questions, comments, or corrections on this document, please email them

to me at eric+cookbooks@stoic.software.

Get in Touch

The best way to keep in regular contact with me is to join the Sustainable SuiteScript

mailing list. | read and respond to all emails | receive there.

| create SuiteScript videos on @ YouTube.

You can also connect with me on fgLinkedIn.

https://www.linkedin.com/in/erictgrubaugh
https://www.linkedin.com/in/erictgrubaugh
https://stoic.software/community/
mailto:eric+cookbooks@stoic.software
https://stoic.software/
https://youtube.com/@StoicSoftware?sub_confirmation=1
https://youtube.com/@StoicSoftware?sub_confirmation=1
https://www.linkedin.com/in/erictgrubaugh
https://www.linkedin.com/in/erictgrubaugh

