Advanced Searching with SuiteScript 2.1

written by Eric T Grubaugh

part of the "SuiteScript by Example" » series

published by Stoic Software, LLC

https://stoic.software/
https://suitescriptbyexample.com/
https://stoic.software/

Advanced Searching with SuiteScript 2.1

by
Copyright (c) 2017- . All rights reserved.
Published by Stoic Software, LLC, PO Box 129, Wellington, CO 80549.

NetSuite and SuiteScript are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

Neither the author nor the publisher have any affiliation with Oracle Corporation or
NetSuite, Inc. This product is neither endorsed nor sponsored by Oracle Corporation or
NetSuite, Inc.

Using Code Samples

This book is here to help you learn. In general, you may use the code presented herein in
your own code. You do not need to contact me unless you are reproducing or redistributing

large portions of the code.

| appreciate, but do not require, attribution. An attribution usually includes the title,
author, and publisher:

"Advanced Searching with SuiteScript 2.1, by Eric T Grubaugh (Stoic Software, LLC).
Copyright 2017 Stoic Software, LLC."

https://stoic.software/
https://stoic.software/

Introduction

This SuiteScript cookbook is intended to provide you with practical examples for creating

complex searches with the SuiteScript API.
In Advanced Searching with SuiteScript 2.1, you'll see examples of:

How to process very large (4,000+) result sets using Paging

How many Results does this Search return? (Without having to run the Search twice)
Which Employees have logged overtime this week? (How to use Summary Filters)
How do | compare values between Search Columns?

Which Time Entries were entered late? (How to use Formula Filters and Columns)

Which Employees have zero time entries? (How to search for absence of something)

Conventions in this Book

All code examples in this book use the “require” function for defining modules. This allows
you to copy and paste the snippets directly into the debugger or your browser's developer

console and run them.
The “N/search” module is always imported as "s".

“console.log" is used for writing output to the browser console. If desired, you can replace
these with calls to the “N/1og> ~ for writing to the Execution Log for the debugger.

For more on how to test SuiteScript in your browser's console, watch my =

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4574548135.html
https://www.youtube.com/watch?v=ZAN8clhKxIw&sub_confirmation=1
https://www.youtube.com/watch?v=ZAN8clhKxIw&sub_confirmation=1

What if | have more than 4000
results?

SuiteScript's various ~ are limited in the number of Results they will retrieve:

The ~each" iterator will iterate through at most "4, 000" Results

“getRange” only allows retrieval of “1,000° Results at a time

What do you do when you need to process more than those limits?

Option 1: Repeated Calls to “getRange"

While ~getRange" is limited to “1,000° Results at a time, those “1,000° can be selected from
any slice of the Result set. We can use this to progressively grab slices of “1,000" Results
and concatenating them into a single Result set:

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4345764122.html

/**
* Retrieves all active Customers, even if there are more than 4,000,
* by successively concatenating chunks of 1,000 at a time

*

* Uses the "getRange method repeatedly to retrieve all Results, regardless of limit
*

* @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/)
<y
require(['N/search'], (s) => {
const customerSearch = s.create({
type: s.Type.CUSTOMER,
Filters: [
['isinactive', s.Operator.IS, 'F']
1,
columns: ['entityid', ‘'email']

}).run()

const getAllResults = (search) => {
let all = []
let results = []

const pageSize = 1000
let start = 0
let end = 1000

do {
results = search.getRange({ start, end })

all = [...all, ...results]

start += pageSize
end += pageSize
} while (results.length === pageSize)

return all

const customers = getAllResults(customerSearch)
console.log(customers.length)

1)

We start by creating our Search object and executing it with “run". In this example, we're

retrieving the email address (“email”) and name (“entityid") of all active Customers:

const customerSearch = s.create({
type: s.Type.CUSTOMER,
filters: [
['isinactive', s.Operator.IS, 'F']
1
columns: ['entityid', 'email']

3).run()

Let's investigate the ~getAllResults function closely. It accepts a generic
~» object (the output of “run()"):

const getAllResults = (search) => {

It instantiates two Arrays:

1. ~all® accumulates all of the results with each loop.

2. “results’ holds only the results from a single search execution at a time.

let all = []
let results = []

Next, it defines some variables which control how we repeat our search executions without

retrieving the same results:

1. “pagesize’ dictates how many results we'll try to retrieve with each execution. We set
this to the maximum possible size allowed by “getRange()" so that we execute the
fewest number of calls to the NetSuite database.

2. “start” will track the beginning index (inclusive) of the current "page" of results.

3. “end’ will track the final index (exclusive) of the current "page" of results.

const pageSize = 1000
let start = 0
let end = 1000

We retrieve all ~» for the Search by invoking “getRange™, combining the current page
of results to any previous results, then advancing the “start™ and “end" indices by one
page. We stop when the page we retrieve is not a full page:

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4345767679.html#bridgehead_4345767679
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4345767112.html

do {
// Retrieve one chunk of 1,000 Results
results = search.getRange({ start, end })

// Add this 1,000 to the end of the full list of Results
// The order is important to maintain any sorting on our Columns
all = [...all, ...results]

// Move to the next page

start += pageSize

end += pageSize

// Stop after we no longer receive a full page

} while (results.length === pageSize)

Once the loop finishes, the ~all" Array will contain all of our Search Results in a single
data set, and we can return it as the output of our function.

return all

Once we have all Results in a single Array, we can process that Array however we choose

in order to accomplish our business task.

We execute our Search by passing it into a custom function, “getAllResults and then

printing out the total number of results we've collected:

const customers = getAllResults(customerSearch)
console.log(customers.length)

Option 2: Paging API

In option 1, we were essentially building our own paging system. Thankfully, NetSuite has
already done that for us, so there is no need to do it ourselves.

The “N/search™ module also provides us with a Pagin ~ for processing large “Result"
sets, giving us fine-grained control over what constitutes a "Page" of data, and how we
want to process it.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4486596158.html#Search.runPaged(options)

/**
* Retrieves all active Customers, even if there are more than 4,000,
* by successively concatenating Pages of 1,000 at a time

*

* Uses the Paging API to retrieve all Results, regardless of limits
* @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/)
<y
require(['N/search'], (s) => {

const customerSearch = s.create({

type: s.Type.CUSTOMER,

Filters: [

['isinactive', s.Operator.IS, 'F']

1,

columns: ['entityid', 'email']
}).runPaged({ pageSize: 1000 })

const getAllResults = (search) => {
const all = []

search.pageRanges.forEach((pageRange) => {
let page = search.fetch({ index: pageRange.index })
all = [...all, ...page.data]

1)

return all

console.log(Expected result count: ${customerSearch.count})

const customers = getAllResults(customerSearch)
console.log(Actual result count: ${customers.length})

1)

We're using the same code structure as we used in Option 1; we're executing the search,
then collecting all the results with a custom ~getAllResults’ function.

To use the Paging API, we use the Search's “runPaged- method instead of “run":

const customerSearch = s.create({
type: s.Type.CUSTOMER,
filters: [
['isinactive', s.Operator.IS, 'F']
1
columns: ['entityid',6 ‘'email']
}) .runPaged({ pageSize: 1000 })

Notice that we can control the number of Results per Page using the "“pagesize™ option of

“runPaged".

minimum allowed ~pageSize" is °5

maximum allowed “pageSize® iS "1,000°

default “pagesize” is "50°

“runPaged” returns a ~» instance. From the ~PagedData’, we iterate

through its Pa 2

search.pageRanges.forEach((pageRange) => {
//

1)

Each “pPageRange™ contains a Page ~ (fetched by its index), and each “page" subsequently
contains the “search.Result” data we can retrieve:

let page = search.fetch({ index: pageRange.index })
all = [...all, ...page.data]

This is slightly more concise than our previous “do...while" attempt.

At this point we have a single Array containing all of our Results, so we are free to process
that Array however we choose:

const customers = getAllResults(customerSearch)
console.log(Actual result count: ${customers.length})

How many results are there?

Notice that a nice side effect of using “runPaged" is the “count® property on the “Pagedbata"

instance it returns, which does not exist when we use “run":

console.log(Expected result count: ${customerSearch.count})

This is a much more performant way of getting the number of total Results from a Search,
without having to use any Summary “counT™ Columns or execute the Search twice.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4486558900.html#search.PagedData
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4486559010.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4486547978.html#search.Page

Which Employees have logged
more than 40 hours this week?

There are many times we'll want to filter Search Results based on an aggregate value, like

a "SUM™, “COUNT, or “MAX". To accomplish this, we can leverage Summary Filters.

Let's look at an example where we find Employees who have entered more than 40 hours
of time this week.

/**
* Finds all Employees who have entered more than 40 hours of time during
* the current business week.

*

* Uses a Summary Filter to find Time Duration greater than 40
*

* @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/)
<y
require(['N/search'], (s) => {
const overtimeSearch = s.create({
type: s.Type.TIME_BILL,
Filters: [
['type', s.Operator.ANYOF, 'A'], 'and', // 'A' => 'Actual Time'
['date', s.Operator.WITHIN, 'thisBusinessWeek'], 'and',
['SUM(durationdecimal)', s.Operator.GREATERTHAN, 40]
1,

columns: [
{
name: 'employee',
summary: s.Summary.GROUP
o {
name: 'durationdecimal',
summary: s.Summary.SUM

b
]
1)

const printEmployee = (result) => {
const employeeName = result.getText({
name: 'employee',
summary: s.Summary.GROUP

1)

const employeeHours = result.getValue({
name: 'durationdecimal',
summary: s.Summary.SUM

1)
console.log(employeeName + ': ' + employeeHours)

return true

console.log(overtimeSearch.runPaged().count)
overtimeSearch.run().each(printEmployee)

1)

We create our Time Bill search to find all Time Entries where the Type is Actual Time, the
Date is within the current business week, and the Sum of the Duration is greater than
*40°. In our Results, we want the Sum of the Duration grouped by Employee.

const overtimeSearch = s.create({
type: s.Type.TIME_BILL,
filters: [
['type', s.Operator.ANYOF, 'A'], 'and', // 'A' => '"Actual Time'
['date', s.Operator.WITHIN, 'thisBusinessWeek'], 'and',
['SUM(durationdecimal)', s.Operator.GREATERTHAN, 40]
1

columns: [

{

name: 'employee',
summary: s.Summary.GROUP

o

name: 'durationdecimal',
summary: s.Summary.SUM

3
]
1)

Focus primarily on the “durationdecimal® Search Filter:

['SUM(durationdecimal)', s.Operator.GREATERTHAN, 40]

To summarize a Filter in a ~, we wrap the name of our Filter field in the

Summary function we want:

“sumM() " for a summation
"MAX ()" for a maximum
“MIN()" for a minimum
“COUNT()" for a count

“AVG()" for an average

If we are using “Filter" Objects instead, we could express this same Filter as:

name: 'durationdecimal',
summary

S.Summary.SUM,
operator

s.Operator.GREATERTHAN,
values

40

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_458440490721.html

After that, we can execute and process our Search like any other.

In this example, we use “runPaged()" to first record the number of search results, then we

process the results by invoking a custom “printEmployee function on each one:

console.log(overtimeSearch.runPaged().count)
overtimeSearch.run().each(printEmployee)

Note that calling “runPaged()" does consume an additional “5° units of governance, so
don't automatically do this on any search that you execute unless you are already calling
“runPaged()” anyway

Which Time Entries were created
more than 7 days after the work
was completed?

In order to perform calculations or comparisons on fields in our Search Results, we need to
leverage NetSuite's Formula capabilities. When searching, we can leverage formulae in
both Filters and Columns.

Let's look at an example to find all Time Entries where the entry was created more than 7
days after the work was actually completed.

Jx
* Retrieves the Time Entries that were created more than one week after
* the work was completed by comparing the Date field to the Date Created
* field on the Time Entry
*
* @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/)
“/
require(['N/search'], (s) => {
// Formula for calculating the difference (in Days) between the Date
// and the Date Created, rounded up with CEIL
const daysElapsedFormula = 'CEIL({date}-{datecreated})'
const lateEntriesSearch = s.create({
type: s.Type.TIME_BILL,
filters: [
[formulanumeric: ${daysElapsedFormula} , s.Operator.GREATERTHAN, 7]
1
columns: [
'employee',
'date’,
'datecreated’,
{
name: 'formulanumeric',
formula: daysElapsedFormula
}
1
1)

const resultToObject = (result) => ({
employeeName: result.getText({ name: 'employee' }),
daysElapsed: result.getValue({ name: 'formulanumeric' })

1)

console.log(# Late Entries = ${lateEntriesSearch.runPaged().count})
const results = lateEntriesSearch.run().getRange({ start: 0, end: 1000 })
const lateEntries = results.map(resultToObject)
console.table(lateEntries)

1)

We start by defining the formula itself:

// Formula for calculating the difference (in Days) between the Date
// and the Date Created, rounded up with CEIL
const dayskElapsedFormula = 'CEIL({date}-{datecreated})’

While it's not necessary to put this into its own variable like this, I've done so to avoid
repeating the same formula in both the Filter and the Column. This way when | need to
change it, | can do so in one spot, and the change will be reflected everywhere it's
necessary.

With the formula defined, we create our Search, specifying a Formula Filter and a Formula
Column for showing the number of days elapsed from Date Created to Date:

const lateEntriesSearch = s.create({
type: s.Type.TIME_BILL,
filters: [
[formulanumeric: ${daysElapsedFormula} , s.Operator.GREATERTHAN, 7]

1

columns: [
'employee’,
'date’,
'datecreated’,

{

name: 'formulanumeric',
formula: daysElapsedFormula

b
]
1)

Note that when you subtract two Date fields in a Formula, NetSuite will give you the
number of Days between those two Dates.

Because the subtraction of two Dates results in a Number, we use “formulanumeric™ rather
than ~formuladate®. The formula type you must choose depends on the output of your
formula, not on the inputs.

Once again, we execute our Search and retrieve results like any other Search:

console.log(# Late Entries = ${lateEntriesSearch.runPaged().count})
const results = lateEntriesSearch.run().getRange({ start: 0, end: 1000 })

In this case | want to “map" over all my Search Results and turn each one into a flat Object

so that they are nicely printable by “console.table".

The “resultToobject™ function turns a single “Result" into a plain object:

const resultToObject = (result) => ({
employeeName: result.getText({ name: 'employee' }),
daysElapsed: result.getValue({ name: 'formulanumeric' })

1)

Then we pass “resultToObject™ as the iterator function for “map so it will translate all the
elements of the “results” Array:

const lateEntries = results.map(resultToObject)
console.table(lateEntries)

Notice how we read the value of the Formula Column by specifying ~formulanumeric™ as

the “name":

daysElapsed: result.getValue({ name: 'formulanumeric' })

What happens if | have multiple Formula Columns?

Since we retrieve the value of a Formula Column by specifying ~formulanumeric, we also

need a way to distinguish between multiple Formula Columns of the same type.

Let's add a non-rounded version of the same Formula to our Search Columns:

require(['N/search'], (s) => {
// Formula for calculating the difference (in Days) between the Date
// and the Date Created, rounded up with CEIL
const daysElapsedFormula = 'CEIL({date}-{datecreated})’
const lateEntriesSearch = s.create({
type: s.Type.TIME_BILL,
filters: [
['formulanumeric: ' + daysElapsedFormula, s.Operator.GREATERTHAN, 7]
1,
columns: [
'employee',
'date’,
'datecreated’,
{
name: 'formulanumeric',
formula: dayskElapsedFormula
3
{

name: 'formulanumeric',
formula: '{date}-{datecreated}'

¥
]
)

const resultToObject = (result) => {
const res = result.toJSON()
console.log(res)
return {
employeeName: result.getText({ name: 'employee' }),
daysElapsed: res.values.formulanumeric,
daysElapsedNoRound: res.values.formulanumeric_1

b
3

console.log(# Late Entries = ${lateEntriesSearch.runPaged().count})
const results = lateEntriesSearch.run().getRange({ start: 0, end: 1000 })
const lateEntries = results.map(resultToObject)
console.table(lateEntries)

1)

First we've added our new non-rounded Formula Column:

columns: [
//

{

name: "formulanumeric",
formula: "{date}-{datecreated}"

However, since both columns are technically named " formulanumeric™, “getVvalue iS unable
to distinguish between them and would retrieve the last one defined.

In order to use multiple Formula Columns of the same type, we have to get a little creative
here and turn the Search Result into a plain JavaScript Object using the Result's ~toJson()"
method:

const res = result.toJSON()
console.log(res)

We log out the object to inspect its structure, and | highly recommend you study it closely
for yourself.

From here, each subsequent "~ formulanumeric™ gets a number appended to it, like
“formulanumeric_1"; we use this knowledge to distinguish between our Formulae of the
same type:

return {
employeeName: result.getText({ name: 'employee' }),
daysElapsed: res.values.formulanumeric,
daysElapsedNoRound: res.values.formulanumeric_1

}

Column Comparisons

When we're building Searches, it's common that we'll need to return the data for

individual Columns, and also need to compare values between those Columns.

Formula Columns are the best way to accomplish these comparisons, like we've done in
this example, comparing the Date to the Date Created on the Time Entry:

columns: [
"employee",
"date",
"datecreated",

{

name: "formulanumeric",
formula: "{date}-{datecreated}"

In this instance, we happen to be subtracting the two, but you could use any operator or
available 5¢ 2 you choose to compare the values.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_N2833020.html#Expressions

Which Employees have no Time
Entries in the past week?

The majority of the time that we're building searches, we're searching for the existence of
Records that meet our criteria. Once in a while, however, we actually need to search for
the absence of something, and this can often be trickier.

For example, which Employees have no Time Entries for this week?

Because we are looking for the absence of a Record, we'll actually need to combine the
Results from two different searches. If the Records don't exist, we can't find them directly,
so we take a slightly different approach:

/**
* Finds Employees that have no Time Entries for the last week.
*
* Combines the Results from two different searches in order to search
* for the absence of Records.

*

* @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/)
“y
require(['N/search'], (s) => {
const employeeSearch = s.create({
type: s.Type.EMPLOYEE,
Filters: [
['isinactive', s.Operator.IS, 'F']
1
columns: [
{ name: 'formulatext', formula: "{firstname} || " ' || {lastname}" }
]
1)

const timeSearch = s.create({

type: s.Type.TIME_BILL,

filters: [
['date', s.Operator.WITHIN, 'thisBusinessWeek'], 'and',
['type', s.Operator.ANYOF, 'A'] // 'A' => "Actual Time'

1

columns: [
{ name: 'employee', summary: s.Summary.GROUP }

]
1)

// Display result counts from each search
console.log(# Employees = ${employeeSearch.runPaged().count})
console.log(# Employees with Entries = ${timeSearch.runPaged().count})

// Assume there are less than 1,000 Employees
const employees = employeeSearch.run().getRange({ start: 0, end: 1000 })
const timeEntries = timeSearch.run().getRange({ start: 0, end: 1000 })

// Does the given employee have at least one Time Entry in entries Array?
const employeeHasEntry = (entries, employee) =>
entries.some((entry) => {
let entryEmployee = entry.getValue({
name: 'employee',
summary: s.Summary.GROUP
1)
return (entryEmployee == employee.id)

1)

// Returns a copy of employees Array but removes any Employees

// that *do* have Time Entries in entries Array

const findEmployeesWithNoEntries = (employees, entries) =>
employees.filter((employee) => !employeeHasEntry(entries, employee))

const printEmployeeName = (result) =>
console.log(result.getValue({ name: 'formulatext' }))

const employeesWithNoEntries = findEmployeesWithNoEntries(
employees,
timeEntries

console.log(# Employees With No Entries = ${employeesWithNoEntries.length})
employeesWithNoEntries.forEach(printEmployeeName)

1)

We first get the list of all active Employees and the list of all Employees who have created
Time Entries for this week:

const employeeSearch = s.create({
type: s.Type.EMPLOYEE,

filters: [
['isinactive', s.Operator.IS, 'F']
1
columns: [
{ name: 'formulatext',6 formula: "{firstname} || ' ' || {lastname}" }
]

1)

const timeSearch = s.create({
type: s.Type.TIME_BILL,
filters: [
['date', s.Operator.WITHIN, 'thisBusinessWeek'], 'and',
['type', s.Operator.ANYOF, 'A'] // 'A' => 'Actual Time'
1

columns: [
{ name: 'employee', summary: s.Summary.GROUP }

]
1)

console.log(# Employees = ${employeeSearch.runPaged().count})
console.log(# Employees with Entries = ${timeSearch.runPaged().count})

const employees = employeeSearch.run().getRange({ start: 0, end: 1000 })

const timeEntries = timeSearch.run().getRange({ start: 0, end: 1000 })

So far there's nothing new here; we're running two separate Searches.

Now in order to determine which Employees don't have any Time Entries, we can
"subtract" the Employees who do have Time Entries from the list of a// Employees. This

will leave us only with Employees who do not have Time Entries.

To accomplish this, we can leverage the JavaScript Array's “filter" » and “some” ~
methods.

First, we write the ~employeeHasEntry" function that accepts an Array of Time Entry Search
Results and a single Employee Search Result. Its job is to determine whether a specific

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/some

Employee has a Time Entry:

const employeeHasEntry = (entries, employee) =>
entries.some((entry) => {
let entryEmployee = entry.getValue({
name: 'employee',
summary: s.Summary.GROUP

1)

return (entryEmployee == employee.id)

1)

We use “some" to determine if the given “employee" exists within the ~entries" Array.

Now that we can detect whether a single Employee has any Time Entries, we need to
extend that over the full list of Employees. This falls to ~findEmployeesWithNoEntries :

const findEmployeesWithNoEntries = (employees, entries) =>
employees.filter((employee) => !employeeHasEntry(entries, employee))

We use “employeeHasEntry™ as the » of a “filter" to remove the Employees that
do have a Time Entry from “employees".

We can now pass in our two separate Result Arrays and list the Employees that have no
Time Entries this week:

const employeesWithNoEntries = findEmployeesWithNoEntries(
employees,
timeEntries

)

console.log(# Employees With No Entries = ${employeesWithNoEntries.length})
employeesWithNoEntries.forEach(printEmployeeName)

This will print out the number of Employees with no Time Entries, followed by the list of

their names.

https://zetcode.com/javascript/predicate/

What's the Internal ID for this
Search Result?

Every Search Result in SuiteScript is fundamentally a reference to a Record in NetSuite.
It's common to run a Search and then want to use the Internal ID for the Record that the
Result represents.

In fact, it's so common that every Search Result in SuiteScript has an “id" property that
contains the corresponding Record's internal ID; there is rarely a need to explicitly add

“internalid” as a Search Column in your Search.

require(['N/search'], function (s) {
const plainSearch = s.create({
type: s.Type.EMPLOYEE,
filters: [
['isinactive', s.Operator.IS, 'F']

1,
columns: [
{ name: 'formulatext', formula: "{firstname} || ' ' || {lastname}" }

]
1)

const printEmployeeld = (result) => {
console.log(result.id)
return false // only process first result

}

console.log('IDs for Plain Search:")
plainSearch.run().each(printEmployeeId)

1)

This will print the internal ID of every active Employee by accessing “result.id; no

“internalid” Column needed.

Except...

As with all things NetSuite, however, there is an exception to this: Summary Columns.

Summarized Search Results no longer reference a single Record, but rather an aggregate
of Records; for summarized Search Results, the “id" property will be “undefined", and thus
not very helpful. However, it's common to summarize your Search Results, and also need

to drill down into the data for the individual Records that make up the summary.

Let's modify our example to group the Employees by their Hire Date:

s.create({

type: s.Type.EMPLOYEE,
filters: [

['isinactive', s.Operator.IS, 'F']
1

columns: [
{ name: 'hiredate', summary: s.Summary.GROUP },

{
name: 'formulatext',
formula: "{firstname} || ' ' || {lastname}",
summary: s.Summary.GROUP

¥

]
1)

How do we access the Internal ID for Search Results within a Summary?

We first add an “internalid® Search Column:

columns: [
{ name: 'hiredate', summary: s.Summary.GROUP },

{

name: 'formulatext',

formula: "{firstname} || ' ' || {lastname}",
summary: s.Summary.GROUP

1y
// Add the internalid Column

{ name: 'internalid', summary: s.Summary.GROUP }

Then we need to access it using “getvalue" instead of ~id":

const printEmployeeId = (result) => {
// Utilize getValue instead of .id

console.log(result.getValue({ name: 'internalid', summary: s.Summary.GROUP 1}))
return false // only process first result

Frequently Asked Questions

How do | find the details on NetSuite's SQL formulas?

The Help page titled 5C ~ contains all the reference material for the

supported SQL functions you can utilize.

How do | find the name/ID for a specific Filter?

Find your Record Type in the ~, and explore the "Search Filters" section.

The value in the Internal ID column is what you'll use as your Filter name.

How do | find the name/ID for a specific Column?

Find your Record Type in the ~, and explore the "Search Columns"

section. The value in the Internal ID column is what you'll use as your Column name.

How do | find the name/ID for a specific Join?

Find your Record Type in the ~, and explore the "Search Joins" section.

The value in the Join ID column is what you'll use as your Join hame.

There's a Records Browser, a Schema Browser, and a
Connect Browser. What's the difference?

Records Browser - Used for accessing Record data via SuiteScript
Schema Browser - Used for accessing Record data via SuiteTalk

Connect Browser - Used for accessing Record data via ODBC

When you're writing SuiteScript, you can safely focus only on the Records Browser.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_N2833020.html#Expressions
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2023_2/script/record/account.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2023_2/script/record/account.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2023_2/script/record/account.html

Recommendations and Resources

NetSuite Help

NetSuite Help is the most definitive reference for the “N/search™ module and all of its
capabilities. | recommend studying the following articles and any related sub-articles:

2

[N~

[N~

[~

Y

[N

[N~

[

[~

|

[~

[

[N~

[~

Use the Search Ul

A great way to both learn about and verify your SuiteScript searches is to actually build
the search in the Ul first, then translate it into SuiteScript.

By doing this, you can quickly verify that the Filters and Columns you're specifying
actually give you the correct results before you even start writing code.

NetSuite Search Export Chrome Plugin

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4345764122.html#subsect_87180423808
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_0304061100.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4483165708.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4345777923.html#search.Summary
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/article_4094344956.html#SuiteScript-2.x-Search-Operators
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4345767603.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_458440490721.html#Search.filterExpression
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4345767216.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4345782273.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_N659383.html#Summary-Type-Descriptions
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_N645835.html#bridgehead_N645984
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_459415222167.html#bridgehead_4587445379
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_458440490721.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4345767216.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_N2833020.html#Expressions

There is a helpful Chrome Plugin called "NetSuite Search Export" built by in

The Plugin will automatically generate SuiteScript for any Saved Search in your account.
You can find it 2

To use this plugin:

1. Create a Saved Search in the Ul
2. Save the search

3. Click the "Export to Script" link near the top right

Searching with SuiteScript Playlist

| have a » pla containing several videos and examples of searching in

SuiteScript.

The Records Browser

The ~ is an absolutely crucial tool for creating effective searches. There is
a new version of the Records Browser for every version of NetSuite. The 2023.2 version
can be found 2.

If you are unfamiliar with the Records Browser, see 2 in the

Help documentation and

Mozilla Developer Network

SuiteScript is a library on top of JavaScript, and the best JavaScript reference manual is the

2.

While not related specifically to NetSuite, this site is an excellent source of JavaScript

reference material, examples, and tutorials.

https://www.linkedin.com/in/davidcrsmith/
https://www.linkedin.com/in/davidcrsmith/
https://chrome.google.com/webstore/detail/netsuite-search-export/gglbgdfbkaelbjpjkiepdmfaihdokglp
https://www.youtube.com/playlist?list=PLG2tK6Va2WUBP_JCf4nVAbFc6vGuB_lBm&sub_confirmation=1
https://www.youtube.com/playlist?list=PLG2tK6Va2WUBP_JCf4nVAbFc6vGuB_lBm&sub_confirmation=1
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2023_2/script/record/account.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2023_2/script/record/account.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_1527577879.html
https://stoic.software/effective-suitescript/records-browser/
https://developer.mozilla.org/

About the Author

My name is fn h. I run the Sustainable SuiteScript community for NetSuite

developers. | founded Stoic Software in 2016 to help others lead successful, sustainable
careers as NetSuite developers.

The "Sustainable SuiteScript" Community

We are a small community of NetSuite developers who want to deepen their technical
skills, expand their professional network, and raise the bar for SuiteScript development.
today.

Questions, Comments, Corrections

If you have any questions, comments, or corrections on this document, please email them
to me at

Get in Touch

The best way to keep in regular contact with me is to join the
mailing list. | read and respond to all emails | receive there.

| create SuiteScript videos on »

You can also connect with me on jn

https://www.linkedin.com/in/erictgrubaugh
https://www.linkedin.com/in/erictgrubaugh
https://stoic.software/community/
mailto:eric+cookbooks@stoic.software
https://stoic.software/
https://youtube.com/@StoicSoftware?sub_confirmation=1
https://youtube.com/@StoicSoftware?sub_confirmation=1
https://www.linkedin.com/in/erictgrubaugh
https://www.linkedin.com/in/erictgrubaugh

