Rendering PDFs with SuiteScript 2.1

written by Eric T Grubaugh

part of the "SuiteScript by Example" » series

published by Stoic Software, LLC

https://stoic.software/
https://suitescriptbyexample.com/
https://stoic.software/

Rendering PDFs with SuiteScript 2.1

by Eric T Grubaugh

Copyright (c) 2017- Stoic Software, LLC. All rights reserved.

Published by Stoic Software, LLC, PO Box 129, Wellington, CO 80549.

NetSuite and SuiteScript are registered trademarks of Oracle and/or its affiliates. Other

names may be trademarks of their respective owners.

Neither the author nor the publisher have any affiliation with Oracle Corporation or
NetSuite, Inc. This product is neither endorsed nor sponsored by Oracle Corporation or
NetSuite, Inc.

Using Code Samples

This book is here to help you learn. In general, you may use the code presented herein in
your own code. You do not need to contact me unless you are reproducing or redistributing
large portions of the code.

| appreciate, but do not require, attribution. An attribution usually includes the title,
author, and publisher:

"Rendering PDFs with SuiteScript 2.1, by Eric T Grubaugh (Stoic Software, LLC).
Copyright 2017 Stoic Software, LLC."

https://stoic.software/
https://stoic.software/

Introduction

Rendering PDFs with SuiteScript 2.1 is intended to provide you with practical examples for
leveraging NetSuite's Advanced PDF engine to generate informative PDF files for
distribution.

In this SuiteScript Cookbook, you'll see examples of:

Displaying a PDF for a user

Downloading a PDF for a user

Rendering a PDF using a Template

Rendering a PDF from custom XML

Rendering Record data in a PDF Template
Rendering Saved Search results in a PDF Template
Rendering Query results in a PDF Template

Rendering custom data sources in a PDF Template

Patterns in this Book

All code examples are written in SuiteScript 2.1.

The “N/render” module is always imported as “render".

Initial Setup

The “N/render® module allows us to interact with NetSuite's built-in PDF generation engine.
NetSuite uses the Freemarker templating engine » to merge data into XML templates, and
it uses the Big_Faceless Organization » (BFO) report generation tool for turning the
resulting XML into a PDF. Specifics on these tools and their operation is beyond the scope
of this cookbook.

Before we can get to rendering your shiny PDFs, there's a little setup work to do first. PDFs
can only be rendered in server-side scripts, meaning we can't drop code in the browser

console and expect it to work.
Instead, we'll build a Suitelet that will render our PDFs for us.

We'll start by building a custom module file. This is where we'll be adding and changing

the code from the upcoming examples:

define(['N/render'], (render) => {
renderPdf = (response) => {

{ renderPdf }

We'll walk through this code in detail shortly.

1. Create a folder in the File Cabinet at “/SuiteScripts/render-pdf-cookbook/"

2. Upload the above source code into the new folder in a file named “render-

cookbook.js .

3. From now on, | will refer to this file as the " render-cookbook™ module".

https://freemarker.apache.org/docs/ref.html
https://bfo.com/products/report/docs/tags/

define(['./render-cookbook', 'N/https'], (pdfCookbook, https) => {

onRequest = (context) => {
log.audit({ : ${context.request.method} request received })

(context.request.method !== https.Method.GET) {

}

pdfCookbook.renderPdf(context.response)

log.audit({ : 'Request complete.' })

{ onRequest }

1. Use the above source code to create a second file in the same folder as before.
2. Use this second file to create a new “suitelet” » named Render a PDF.
3. Create a Deployment ~ for the Suitelet; leave it in “Testing® status.

4. On the Deployment, add a new “Link" ~ in the “Links" sublist. Locate it somewhere
accessible to the Role you'll be using to test the examples in this book. For me, using

the Administrator Role, | chose “Classic Center > Setup > Custom > Render a PDF’.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4489062315.html#procedure_4489062240
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_0706024425.html#procedure_1557886205
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_1524082595.html#bridgehead_1524083321

Script Deployment

m Back Actions «

SCRIPT STATUS

Render a PDF Testing

TITLE EVENT TYPE
Render 2 PDF

D LOG LEVEL
customdeploy_sl_render Debug

¥'| DEPLOYED EXECUTE AS ROLE

Current Role
AVAILABLE WITHOUT LOGIM

URL
fapp/siteshosting/scriptlet.nl?script=682 &deploy=1

Audience+ Links+ Execution Log System Motes

CENTER SECTION CATEGORY LABEL

Classic Center Setup Custom Render 3 PDF

“A If either of these code files is named differently or is not in the same folder, you will
likely receive “MODULE _NOT_FOUND" errors when attempting to access the Suitelet.”

This Suitelet is our test runner for working with files. Whenever we need to test one of our
code examples, we access the link for the Suitelet in NetSuite's main navigation, and we
can monitor the resulting Execution Logs » on the Suitelet record.

For the remainder of the cookbook, you should not need to make any modifications to the
Suitelet or its source code.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4375896105.html#Using-the-Script-Execution-Log-Tab

Render and Display a PDF

We start by rendering a PDF consisting of static text:

renderPdf = (response) => {
xmlContent = °
<!DOCTYPE pdf PUBLIC "-//big.faceless.org//report" "report-1.1.dtd">
<pdf>
<body>Hello World!</body>
</pdf>

renderer = render.create()
renderer.templateContent = xmlContent
renderer.renderToResponse({ response })

3

Navigate to the Suitelet via the Link you created on the Deployment, and you should see

the message "Hello World!" rendered in a PDF and displayed in your browser.

Hello World!

Create the XML

xmlContent = °
<?xml version="1.0"?>
<!DOCTYPE pdf PUBLIC "-//big.faceless.org//report" "report-1.1.dtd">
<pdf>

<body>Hello World'!</body>
</pdf>

Our template is a string of XML boilerplate containing a ~<body>" which consists of a static
text message: “Hello World!",

The BFO generator accepts markup that is nearly identical to HTML. See the BFO

reference » for details.

https://bfo.com/products/report/docs/tags/
https://bfo.com/products/report/docs/tags/

“TemplateRenderer”

renderer = render.create()

renderer.templateContent = xmlContent

The core of the “N/render” module's » functionality resides in the ~TemplateRenderer

Object ~, which we generate using the “create()" _method » of the module. We then assign

the raw XML string to the “~TemplateRenderer 's ~templateContent’ property. There are many
more capabilities of this Object which we will continue to explore, but for now, our
template is set and ready to transform into a PDF.

renderer.renderToResponse({ response })

The “renderToResponse ()" method » of the “~TemplateRenderer: takes the content we've set

as the template and (later) any data we've merged into the template and writes the
output to our Suitelet's “serverResponse™ object ~.

“A There is additionally a ~“renderPdfToResponse() " method », but at the time of this

writing (2024.1), this method was failing with an ~UNEXPECTED_ERROR".”

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4412042824.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4412042824.html#bridgehead_4412220897
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4412042824.html#bridgehead_4412220897
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_455028930663.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_459426513671.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4314609319.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_455108276366.html

Download the Rendered PDF

Our previous example creates the PDF and renders it directly in the user's browser. What if
we want the PDF to download automatically for the user instead?

Update the “renderpdf" function like so:

renderPdf = (response) => {
xmlContent = °
<!DOCTYPE pdf PUBLIC "-//big.faceless.org//report" "report-1.1.dtd">
<pdf>
<body>Hello World!</body>
</pdf>

renderer = render.create()
renderer.templateContent = xmlContent

pdf = renderer.renderAsPdf()
response.writeFile({ : pdf, : false })

}

We've replaced the usage of “renderer.renderToResponse()" with:

pdf = renderer.renderAsPdf ()

response.writeFile({ ! pdf,

The renderAsPdf() method ~ turns our template into a “File" instance, and then we use

the Suitelet's “ServerResponse.writeFile() method » to send the “File" in the response.

isinline

The “isInline” option of “writeFile()" is a boolean flag which indicates whether the

“File" should be rendered in the browser (“true) or downloaded (" false").

“& Unfortunately, at the time of this writing (2024.1), setting “isInline’ to “true’ does
not seem to work correctly for PDF files, and the PDF gets downloaded regardless of the

value of “isInline".”

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_452241760253.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4426015540.html

Render a Record using an existing
PDF Template

We've used our ability to specify our own XML and transform it into a PDF, but it's
extremely clunky to manage XML (or any code) within a string like we've had to do in our
first two examples. Plus, NetSuite already has a robust PDF Template system. How about

we leverage that instead?

Replace “render-cookbook.js™ with:

define(['N/file', 'N/render'], (file, render) => {
renderPdf = (response) => {

pdf = render.transaction({
: 1280,
71

1)

response.writeFile({

}

{ renderPdf }

results in:

o
a8 b
o> Quote
- == Date Quote #
~ 2017173 QUOO0001029
Hapeumashdifa
Suite 100

San Mateo CA 94403
us

Victor Vartan

Franklin Photography

106 W. Kirkwood, Ave

Bloomington IN 47404

Project Customer Ph... Ship Via
Quantity Description Options Rate Amount Logo
Mikon Pix 5 2 inch display and 10X(s Zoom make this steal 1, 10000 5,500.00
B.5 | for the money
apixe

BE?EI
4.8 2 4.8 Megapixels for very clear photographs 225.00 450,00
Megapixels
for very clear
Eh-:}tngraphs

ujiFilm 3 QOutstanding pictures, 16MB memory card and 250.00 T50.00
SharpPix 3d's Zoom
ASTS Digital

“render.transaction() "

The “N/render™ module gives us several methods for leveraging NetSuite's Advanced
PDF/HTML Template system. Here, we demonstrate the ~transaction()_ _method's » ability

to render a Transaction record using the PDF Templates specified on the Transaction Form.

pdf = render.transaction({
1280,

71

The “entityId" is - despite the name - actually the internal ID of the Transaction record
we'd like to render. The “formId" is the numeric internal ID of the Transaction Form to start
from.

In this specific example, “1280" is the internal ID of a Quote/Estimate record, and 71" is
the internal ID of the Standard Quote Transaction Form.

Importantly, ~formId" is notthe ID of a specific PDF Template. Instead, NetSuite inspects

the Transaction Form you've selected, then uses the “Print Template" selected there.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_452452331542.html

Custom Transaction Form

m Cancel Save & Move Elements

MNAME *

Custom Online Quote

D

TYPE
Quote

PRINTING TYPE @ ADVANCED () BASIC
PRINT TEMPLATE
Standard Quote PDF/HTML Template v

Refresh the Suitelet's page, and you should see your transaction PDF form rendered in the

browser.

Print Modes

By default, “transaction()" and its sibling methods will print the record in either PDF or
HTML format, depending on the User or the Company Preference for “PRINT USING HTML .
You can force the printing mode to one or the other by using the “printMode" option of

each method and the “render.PrintMode™ enumeration »

Rendering other Record Types

The sibling methods for "“transaction()" within “N/render" are:

_bom() "~

“pickingTicket () ~

“statement ()" ~

All of these are convenience methods, abstracting the “~TemplateRenderer™ Object we've
used previously and returning the “File" instance for the PDF directly.

They all behave similarly, but | leave researching the specifics of each as an exercise for
you.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4412215015.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_457552429198.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_458625732421.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_456921936034.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_455095458983.html

Render a Record using a Custom
Template

We can combine what we've learned so far, leveraging the more sophisticated Freemarker
templates and merging records into them, to render PDFs from our own custom Templates,
as opposed to ones created via the Ul.

Replace “render-cookbook.js™ with:

define(['N/file', 'N/record', 'N/render'], (file, r, render) => {
renderPdf = (response) => {
xmlContent = file.load({ : './custom-record.ftl' }).getContents()

renderer = render.create()
renderer.templateContent = xmlContent

renderer.addRecord({
"quote',
r.load({ : r.Type.ESTIMATE, : 1280 1})
1)

renderer.renderToResponse({ response })

{ renderPdf }

Name the following file ~custom-record.ftl", and upload it to the same folder as “render -

cookbook.js:

<! "-//big.faceless.org//report" "report-1.1.dtd">
<pdf>
<head>
</head>
<body size="Letter">
<form>
<h4>${quote.tranid@label}: ${quote.tranid}</h4>
<p>
${quote.probability@label}:
${quote.probability}
</p>
<p>
${quote.expectedclosedate@label}:
${quote.expectedclosedate}
</p>
<p>
${quote.total@label}:
${quote.total}
</p>
<p>
Sales Team:
<#list (quote.salesteam)![]>
<table>
<tr>
<th>Name</th>
<th>Role</th>
<th>Contribution</th>
</tr>
<#items as rep>
<tr>
<td>${rep.employee}</td>
<td>${rep.salesrole}</td>
<td>${rep.contribution}</td>
</tr>
</#items>
</table>
<#telse>
No associated Sales Team.
</#list>
</p>
</form>
</body>
</pdf>

Rendering the PDF results in something like:

Quote #: QUO00001029

Probability: 50%
Exp. Close: 2017/1/3
Total: $6,080.00

Sales Team:
Name Role Contribution

E0016 Neil Thomson Sales Rep 100%

Our custom template exists like any other file in the File Cabinet, so we can load its

contents into our script accordingly using the “N/file® module.

xmlContent = file.load({ : './custom-record.ftl' }).getContents()

We then create a new “TemplateRenderer™ as usual and assign the template file contents to
“renderer.templateContent”. Keeping our Template XML in its own dedicated file and not in
a string within our script is highly preferable and will make it far easier to maintain and

update.

renderer = render.create()

renderer.templateContent = xmlContent

As we saw with the ~transaction()" method, we can merge existing records into custom

templates as well by using the ~addRecord() _method » of the “TemplateRenderer . We use

the “N/record™ module to load a reference to a specific “Record" - in this case, the exact
same Quote/Estimate from the previous example - and we pass that reference in to
“addRecord() " via the “record™ property.

renderer.addRecord({
"quote',

r.load({ : r.Type.ESTIMATE, : 1280 })

1)

When we merge a “Record’ instance into the template, we need to tell the engine which
name to assign the data from the “Record" instance to using the ~templateName . Looking
at our template, it expects to read data from the Quote record using the name "“quote"
(e.g. “${quote.tranid}) , thus we set the "“templateName® tO “quote".

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_456543212890.html

From there, we render and display the PDF exactly as we have in previous examples.

renderer.renderToResponse({ response })

Render Search Results

We just saw how to use a “Record’ instance as a template datasource, and there are

several more options we have for supplying data to our template.
First, we'll look at how to add Saved Search results to our template.

Replace “render-cookbook.js™ with:

define(['N/file', 'N/render', 'N/search'], (file, render, s) => {
const renderPdf = (response) => {
const xmlContent = file.load({ id: './custom-search.ftl' }).getContents()

const renderer = render.create()
renderer.templateContent = xmlContent

renderer.addSearchResults({
templateName: 'quotes',
searchResult: findQuotes()

1)

renderer.renderToResponse({ response })

const findQuotes = () =>
s.create({

type: s.Type.ESTIMATE,

filters: [
['mainline', s.Operator.IS, true], 'AND',
["amount', s.Operator.GREATERTHAN, 10000]

1

columns: [
'"tranid',
'salesrep’,
'entity',
"amount'

1
}).run().getRange({ start: 0, end:

return { renderPdf }
1)

Name the following file “custom-search.ftl, and upload it to the same folder as “render-

cookbook.js:

<! "-//big.faceless.org//report" "report-1.1.dtd">
<pdf>
<head>
</head>
<body ="Letter">
<form>
<h4>Quotes 10k</h4>
<p>
<#list
<table>
<tr>
<th>Quote #</th>
<th>Sales Rep</th>
<th>Customer</th>
<th>Amount</th>
</tr>
<#items
<tr>
<td>${quote.tranid}</td>
<td>${quote.salesrep}</td>
<td>${quote.entity}</td>
<td>${quote.amount}</td>
</tr>
</#items>
</table>
<#else>
No Quotes
</#list>
</p>
</form>
</body>
</pdf>

Rendering the PDF results in something like:

Quotes > 10k

Quote # Sales Rep Customer Amount
101002 E0004 Knista Barton C000907 B-Sharp Music
i C000903 Jennings Financial
San Francisco Design Center
26 E0001 Enc T Grubaugh C(715 San Francisco Design Center

QUO0O0001033 E0010 Clark Koozer C000272 Advanced Machining Techniques Inc.

Supplying the Search Results

Here we use a similar approach to the “addRecord()" example. We load a template file
from the File Cabinet and apply it to the contents of our “~TemplateRenderer . Then, we

invoke the ~addsearchResults()" method » of the “~TemplateRenderer"

renderer.addSearchResults({
'quotes',

: findQuotes()

1)

The parameters are almost identical to those of ~addrRecord™; we pass the Array of “Result"
instances to render via the “searchResult™ parameter, and the name by which the

template references those results via the ~templateName®™ parameter.

| happened to write a separate function which creates an ad-hoc “search™ and runs it, but
you could instead load an existing Saved Search and run that. The only requirement is

that you pass an Array of “N/search.Result’ instances » to the “searchResult"™ parameter.

Accessing Search Columns in the Template

Given the “columns" definition of our Search:

[
'"tranid',
'salesrep’,

'entity',
'amount'

to access the ~columns™ within our template, we use the ~templateName® from

“addSearchResults()” combined with the “name" of the “column” instance:

<#items

<tr>
<td>${quote.tranid}</td>
<td>${quote.salesrep}</td>

<td>${quote.entity}</td>
<td>${quote.amount}</td>
</tr>
</#items>

Summary Limitation / Workaround

Note that it is not possible as of this writing (2024.1) to access summarized Columns

(groups, sums, etc) from a template. You can work around this limitation using the custom

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_456249023436.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4345767112.html

datasource approach which we will see later. You would run your summarized search, map
the “Result" instances to plain “object" instances, then render those in the template using
the “oBJECT" datasource.

Render Query Results

In addition to Search results, we can also use Query results as a datasource for our
template.

Replace “render-cookbook.js™ with:

define(['N/file', 'N/render', 'N/query'], (file, render, q) => {
const renderPdf = (response) => {
const xmlContent = file.load({ id: './custom-query.ftl' }).getContents()

const renderer = render.create()
renderer.templateContent = xmlContent

renderer.addQuery({
templateName: 'individuals',
query: findIndividuals(),
pageIndex: O,
pageSize: 10

1)

renderer.renderToResponse({ response })

const findIndividuals () => {
const customerQuery = q.create({
type: g.Type.CUSTOMER,
columns: [
{ fieldId: 'email' },
{ fieldId: 'firstname' },
{ fieldId: 'lastname' }
1
1)

customerQuery.condition = customerQuery.createCondition({
fieldId: 'isperson',
operator: ¢g.Operator.IS,
values: true

1)

return customerQuery

return { renderPdf }
1)

Name the following file ~custom-query.ftl", and upload it to the same folder as “render-

cookbook.js:

<! "-//big.faceless.org//report" "report-1.1.dtd">
<pdf>

<head>
</head>
<body ="Letter">
<form>
<h4>Individuals</h4>
<p>
<#list >
<table>
<tr>
<th>#</th>
<th>Individual</th>
<th>Email Address</th>
</tr>
<#items >
<tr>
<td>${ind?counter}</td>
<td>${ind[1]} ${ind[2]}</td>
<td>${ind[0] }</td>
</tr>
</#items>
</table>
<#else>
None.
</#list>
</p>
</form>
</body>
</pdf>

Rendering the PDF results in something like:

Individuals

Individual Email Address

[ain Bennett ibennett@netsuite.com
Gus Lee alif@netsuite.com

Test

testerl

Gary Underwood ga

Frank Edwards

Alex Fabre

Aaron Abbott

Mike Muller mm{@mmltd.us

10 Greg Muller [originaldrafisltd.net

Supplying the Query

renderer.addQuery({
templateName: 'individuals',
query: findIndividuals(),

pageIndex: O,
pageSize: 10

1)

Similar to the Search example, we “load" our template file, assign it as the contents of the
“TemplateRenderer™. Then, we call the ~addQuery()" method ~, providing it with a
“templateName™ for our Query results and the “Query" Object itself.

const findIndividuals () =>{
const customerQuery g.create(

return customerQuery

}

Note one critical difference is that we do not actually execute our Query; we only create

the ~Query" instance, and that is what we pass to the “query" parameter of “addQuery".

Additionally, see how we limit the number of results and/or select a specific page of

results to render via the “pageIndex’ and "“pageSize" parameters.

Accessing Query Columns

columns: [
{ fieldId: 'email' 1},
{ fieldId: 'firstname' },
{ fieldId: 'lastname' }

]

<tr>
<td>...</td>
<td>${ind[1]} ${ind[2]}</td>
<td>${ind[0]}</td>

</tr>

Observe we access Query columns by the order in which they were defined on the Query.

We cannot, unfortunately, access Query columns by their ~fieldid" as we can with Search
results.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_156217838581.html

Render Custom Datasources

Finally, we can use several formats of custom datasources for our template:

JavaScript Objects
JSON strings
XML strings

XML ~pocument” Objects

Replace “render-cookbook.js™ with:

define(['N/file', 'N/render', 'N/xml'], (file, render, xml) => {
const renderPdf = (response) => {
const xmlContent = file.load({ id: './custom-datasource.ftl' })
.getContents()

const objectData = gatherMetrics()
const xmlData =
<script>
<name>Render a PDF</name>
<id>customscript_render_pdf</id>
</script>

const renderer = render.create()
renderer.templateContent = xmlContent

renderer.addCustomDataSource ({
alias: 'metricsXml',
format: render.DataSource.XML_STRING,
data: xmlData
1)
renderer.addCustombDataSource({
alias: 'metricsDoc',
format: render.DataSource.XML_DOC,
data: xml.Parser.fromString(xmlData)
1)
renderer.addCustombDataSource({
alias: 'metricsObj',
format: render.DataSource.OBJECT,
data: objectData
1)
renderer.addCustomDataSource ({
alias: 'metricsJson',
format: render.DataSource.JSON,
data: JSON.stringify(objectData)

1)

renderer.renderToResponse({ response })

const gatherMetrics = () => ({
start: new Date(),
runtime: 7.8903,
governanceUsed: 883,
author: ['Eric', 'T', 'Grubaugh']
1)

{ renderPdf }

Name the following file “custom-datasource.ftl", and upload it to the same folder as

“render -cookbook. js:

<! "-//big.faceless.org//report" "report-1.1.dtd">
<pdf>
<head>
</head>
<body size="Letter">
<form>
<h4>Script Metrics</h4>
<p>XML string:
${metricsXml.script.name}
</p>
<p>XML Document:
${metricsDoc.script.id}
</p>
<p>
0BJECT
datasource
</p>
<table>
<tr>
<td>
Start Time
</td>
<td>${metricsObj.start?datetime.iso?string.long}</td>
</tr>
<tr>
<td>
Runtime
</td>
<td>${metricsObj.runtime} seconds</td>
</tr>
</table>
<p>
JSON
datasource
</p>
<table>
<tr>
<td>
Governance Used
</td>
<td>${metricsJson.governanceUsed}</td>
</tr>
<tr>
<td>
Author
</td>
<td>${metricsJson.author?join(" ")}</td>
</tr>
</table>
</form>
</body>
</pdf>

Rendering the PDF results in something like:

Script Metrics

XML datasources
Render a PDF
customscript_render pdf
OBJECT datasource

Start Time November 19, 2020 8:04:03 PM MST

Runtime 7.8903 seconds
JSON datasource

Governance Used 883
Author Eric T Grubaugh

We have yet another similar APl in the ~addCustombataSource()" method ~. We provide an

“alias” by which the data will be accessed within the template and the “data" to render.

Additionally, we provide one of four datasource "“format s from the render.DataSource"

enumeration ~.

Rendering data from an XML string

xmlData =
<script>
<name>Render a PDF</name>
<id>customscript_render_pdf</id>
</script>

renderer.addCustombDataSource({
'metricsXml',
render .DataSource.XML_STRING,
xmlData

In this particular example, we write the XML as a string literal directly within our script, but

it could have been loaded from the File Cabinet or retrieved from an external web service.

The source of the XML is irrelevant, so long as we're passing in a “string" of valid XML.

<p>
${metricsXml.script.name}

</p>

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4528541027.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4619588793.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4619588793.html

The template will parse our XML string into an Object structure. We access the data from
our string via the ~alias™ we provided, then we navigate down the XML tree like we would
an Object's properties.

Rendering data from an XML Document

renderer.addCustombDataSource({
'metricsDoc',
: render.DataSource.XML_DOC,

: xml.Parser.fromString(xmlData)

Alternatively, we can parse the XML string into a proper “bocument " instance using the
*N/xml” module's Parser.fromString() method ~. This might be useful if we needed to

transform the XML somehow beforehand, or only pull specific data points out of it first.

<p>XML Document:
${metricsDoc.script.id}
</p>

Similarly to the XML string, the template will parse the “bDocument " into an Object, and we

access its values via the “alias™ we provided.

Rendering data from an Object

gatherMetrics = () = ({
Date(),
: 7.8903,
: 883,
['Eric', 'T', 'Grubaugh']

objectbData = gatherMetrics()

renderer.addCustomDataSource ({
'metricsObj',
: render.DataSource.0BJECT,
: objectData

We can render native JavaScript Object data. Here the data is static, but - as with the XML
- the source is irrelevant. Whether it comes from a function within our script, another
module, or an external service does not matter, so long as we pass it in to

“addCustomDataSource() as an "Object".

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4344924195.html

To access "object™ data within the template, we use the “alias" as the name of the object,

and then access its properties like we would any JavaScript object:

<td>${metricsObj.start?datetime.iso?string.long}</td>

<td>${metricsObj.runtime} seconds</td>

“string’s and “number s retain their types within the template.

A “pate’ instance in JavaScript (e.g. “start”) gets transformed to a date ~ in the template.

Rendering data from a JSON string

renderer.addCustombDataSource({
'metricsJson',
: render.DataSource.JSON,
: JSON.stringify(objectData)

Whether we parse an Object into a JSON string or receive it that way from, say, an

external service, we can render JSON data in our PDF as well.

Accessing the data from a JSON string is identical to accessing “object™ data; use the

‘alias” and then access the property by its “key:

<td>${metricsJson.governanceUsed}</td>

<td>${metricsJson.author?join(" ")}</td>

If our Object or JSON contains an Array (e.g. “author™), it will get passed into the template

as a sequence

Combining Datasources

Note in this example, we add several datasources to our template. | know of no technical
limit - although certainly there are practical limits - on the number or the types of
datasources you can add to a single template. Using the same template, you could add a
set of Search Results, a set of Query results, four transactions, seven Objects, three J]SON
strings, 27 XML documents ...

Those numbers are arbitrary. Combine and render as many datasources as is useful and

actionable to the consumer of the PDF.

https://freemarker.apache.org/docs/ref_builtins_date.html
https://freemarker.apache.org/docs/ref_builtins_sequence.html

Recommendations and Resources

NetSuite Help

NetSuite Help is the most definitive reference for SuiteScript and all of its capabilities. |

recommend studying the following articles and any related sub-articles:

N/render module »

N/render »~

N/xml.Parser »~

N/xml Samples »

N/xml Module Script Samples »

FreeMarker Syntax »

FreeMarker Data Model »

Syntax for Advanced Template Fields »

Using FreeMarker to Work with Hidden Fields Used in Advanced Templates ~

Big Faceless Org Generator

For details on what markup tags are allowed in your PDF templates, see the BFO PDF Tag

Reference ~.

Apache Freemarker Template Language

For details on the functions and directives you can use in your templates, see the

Freemarker Language Reference »

The Records Browser

The Records Browser ~ is an absolutely crucial tool for creating effective searches. There is

a new version of the Records Browser for every version of NetSuite. The 2023.2 version

can be found in NetSuite Help ~.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4412042824.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_157072763013.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4344917661.html#bridgehead_4344920205
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_157072975650.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_0305035854.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/bridgehead_3785741842.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/bridgehead_3784766932.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_N2864199.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_156752233995.html
https://bfo.com/products/report/docs/tags/
https://bfo.com/products/report/docs/tags/
https://freemarker.apache.org/docs/ref.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2023_2/script/record/account.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2023_2/script/record/account.html

If you are unfamiliar with the Records Browser, see SuiteScript Records Browser ~ in the

Help documentation and my tutorial.

Mozilla Developer Network

SuiteScript is a library on top of JavaScript, and the best JavaScript reference manual is the

Mozilla Developer Network ~.

While not related specifically to NetSuite, this site is an excellent source of JavaScript

reference material, examples, and tutorials.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_1527577879.html
https://stoic.software/effective-suitescript/records-browser/
https://developer.mozilla.org/

About the Author

My name is B Eric T Grubaugh. | run the Sustainable SuiteScript community for NetSuite

developers. | founded Stoic Software in 2016 to help others lead successful, sustainable
careers as NetSuite developers.

The "Sustainable SuiteScript" Community

We are a small community of NetSuite developers who want to deepen their technical
skills, expand their professional network, and raise the bar for SuiteScript development.

Join us today.

Questions, Comments, Corrections

If you have any questions, comments, or corrections on this document, please email them

to me at eric+cookbooks@stoic.software.

Get in Touch

The best way to keep in regular contact with me is to join the Sustainable SuiteScript

mailing list. | read and respond to all emails | receive there.

| create SuiteScript videos on @ YouTube.

You can also connect with me on fgLinkedIn.

https://www.linkedin.com/in/erictgrubaugh
https://www.linkedin.com/in/erictgrubaugh
https://stoic.software/community/
mailto:eric+cookbooks@stoic.software
https://stoic.software/
https://youtube.com/@StoicSoftware?sub_confirmation=1
https://youtube.com/@StoicSoftware?sub_confirmation=1
https://www.linkedin.com/in/erictgrubaugh
https://www.linkedin.com/in/erictgrubaugh

