
Sending Email with SuiteScript 2.1

written by Eric T Grubaugh

part of the "SuiteScript by Example"↗ series

published by Stoic Software, LLC

https://stoic.software/
https://suitescriptbyexample.com/
https://stoic.software/

Sending Email with SuiteScript 2.1

by Eric T Grubaugh

Copyright (c) 2017- Stoic Software, LLC. All rights reserved.

Published by Stoic Software, LLC, PO Box 129, Wellington, CO 80549.

NetSuite and SuiteScript are registered trademarks of Oracle and/or its affiliates. Other

names may be trademarks of their respective owners.

Neither the author nor the publisher have any affiliation with Oracle Corporation or

NetSuite, Inc. This product is neither endorsed nor sponsored by Oracle Corporation or

NetSuite, Inc.

Using Code Samples

This book is here to help you learn. In general, you may use the code presented herein in

your own code. You do not need to contact me unless you are reproducing or redistributing

large portions of the code.

I appreciate, but do not require, attribution. An attribution usually includes the title,

author, and publisher:

"Sending Email with SuiteScript 2.1, by Eric T Grubaugh (Stoic Software, LLC). Copyright

2017 Stoic Software, LLC."

https://stoic.software/
https://stoic.software/

Introduction

Sending Email with SuiteScript 2.1 is intended to provide you with practical examples for

sending communication via email using SuiteScript's `N/email` module.

In this SuiteScript Cookbook, you'll see examples of:

Sending a simple email

Sending an email to multiple recipients, including `CC` and `BCC` functionality

Sending an HTML email

Sending an email using a template

Attaching files to an email

Linking an email to a NetSuite record

⚠️ WARNING ⚠️

This Cookbook contains example code for sending emails - real, live emails. If you will be

practicing the examples in a Production environment, any email you send from the

browser console will actually be delivered to all recipients. Do not be the developer that

emails your customers an Invoice by mistake.

If at all possible, practice with these examples in a Sandbox or a Preview account.

Sandbox Email Handling

Sandboxes and Release Preview accounts handle email differently so that - similarly to the

above warning - test emails do not go out to real users or clients. You can control the

configuration of email in these accounts by going to `Setup > Company > Email Preferences

> Email Options subtab`.

Your options are:

1. `SEND EMAIL TO`: All emails, regardless of who you set as recipients/CCs/BCCs, will go

to the email address(es) listed here.

2. `SEND EMAIL TO LOGGED IN USER`: Self-explanatory, but all emails will go to the user in

context during the execution of the script. If you're testing in the browser console,

they should come to your inbox.

3. `DO NOT SEND EMAILS`: No matter what you do, your emails will not show up in anyone's

inbox. Emails will, however, continue to be linked on the Sender's `Communications`

subtab.

Work with your Account Administrator to decide the appropriate setting as you test and

adapt these examples.

Patterns in this Book

All code examples are written in SuiteScript 2.1.

All code examples in this book use the `require` function for defining modules. This allows

you to copy and paste the snippets directly into the debugger or your browser's developer

console and run them.

Module aliases:

The `N/email` module is always imported as `email`.

The `N/render` module is always imported as `render`.

The `N/file` module is always imported as `file`.

`console.log` is used for writing output to the browser console. If desired, you can replace

these with calls to the `N/log` module↗ for writing to the Execution Log for the debugger.

For more on how to test SuiteScript in your browser's console, watch my How-To video.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4574548135.html
https://www.youtube.com/watch?v=ZAN8clhKxIw&sub_confirmation=1
https://www.youtube.com/watch?v=ZAN8clhKxIw&sub_confirmation=1

/**/**

 * Send a bare minimum email * Send a bare minimum email

 * *

 * @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/) * @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/)

 */ */

requirerequire(([['N/email''N/email']],, ((emailemail)) =>=> {{

 email email..sendsend(({{

 authorauthor:: --55,,

 recipientsrecipients:: 'eric@stoic.software''eric@stoic.software',,

 subjectsubject:: 'Here Be Dragons''Here Be Dragons',,

 bodybody:: 'Seriously. Really super big dragons.''Seriously. Really super big dragons.'

 }}))

}}))

Sending a simple email

The `N/email` module provides the functionality you'll need to send email communications

in and out of NetSuite via SuiteScript. All standard email features like sender, recipients,

CC, BCC, and file attachments are supported.

Let's start by sending an email with the bare minimum of details. To do so, we use the

send method↗ of the `N/email` module:

This results in an email that looks something like this:

To view an email you've sent within NetSuite, navigate to the Employee record of the

`author`, and locate the email within the `Communication > Messages` subtab.

`email.send()`

The `send()` method provides everything you'll need to send non-bulk email from

SuiteScript. The `send()` method uses `20` governance units and is supported in both

Client and Server scripts.

You can see here that four basic options are provided to `send()`:

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4358681681.html

1. `author`: The sender of the email; this must be the internal ID of an active Employee

record. You cannot send email out of NetSuite from arbitrary email addresses.

2. `recipients`: The receiver(s) of the email; this can be the internal ID of any Entity

record (Lead, Prospect, Employee, etc) or any valid email address as a `string`. You

can send to multiple recipients, and you can mix-and-match addresses and internal

IDs. We'll look at how we do that in the next example.

3. `subject`: As the name implies, this is the email's subject line.

4. `body`: The text of the email as a `string`. Both plain text and HTML are supported

here; we'll look at an HTML example later, and we'll also see how we can merge

records into templates and generate the email body.

When you use an internal ID for any recipient, make sure the primary Email Address is

populated on the corresponding record; if it is not, the `send()` method will throw an

unhelpful `UNEXPECTED ERROR`.

These four parameters are the minimum required values to send an email with the

`send()` method. As we continue exploring further uses of the `send()` method, we'll see

the other parameter options it provides.

`email.send.promise()`

Do note when you use `N/email` from a Client Script, there is a `Promise` version of the

`send()` method: email.send.promise()↗. While Promises are beyond the scope of this

Cookbook, you can find more info in Help↗ and other links in the Resources chapter.

Additional Miscellaneous Options

There are two minor options to `send()` that are straightforward enough that we will not

explore them in detail, but only describe them here:

`isInternalOnly`: A boolean flag that indicates whether the `Message` created by the

email will be visible to external Entities like Customers. Defaults to `false`. It may be

a good idea to set this to `true` while you are testing.

`replyTo`: Sets the email's `reply-to` header value. Must be a valid email address.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4440805906.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4387812940.html

/**/**

 * Send an email to multiple recipients, CCs, and BCCs * Send an email to multiple recipients, CCs, and BCCs

 * *

 * @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/) * @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/)

 */ */

requirerequire(([['N/email''N/email']],, ((emailemail)) =>=> {{

 email email..sendsend(({{

 authorauthor:: --55,,

 recipientsrecipients:: [['eric@stoic.software''eric@stoic.software',, 'aragorn@kingme.mid''aragorn@kingme.mid']],,

 cccc:: [[1717,, 'frodo@fly.fool''frodo@fly.fool']],,

 bccbcc:: [['s@iseeyou.mordor''s@iseeyou.mordor',, 2121,, 'notthegrey@eaglefriends.mid''notthegrey@eaglefriends.mid']],,

 subjectsubject:: 'Here Be Dragons''Here Be Dragons',,

 bodybody:: 'Like, really super big dragons''Like, really super big dragons'

 }}))

}}))

recipientsrecipients:: [['eric@stoic.software''eric@stoic.software',, 'aragorn@kingme.mid''aragorn@kingme.mid']],,

Sending email to multiple

recipients

What good is an email you can only send to one person? How else would you catch people

accidentally hitting "Reply All"? The `send()` method supports multiple recipients as well

as `CC` and `BCC` functionality:

results in an email with a list of recipients:

Multiple recipients

The `recipients` property supports the following values:

a single internal ID of an Entity record (Customer, Employee, Vendor, etc) as a

`number`

a single email address as a `string`

an Array containing any combination of the above options to send to multiple people.

cccc:: [[1717,, 'frodo@fly.fool''frodo@fly.fool']],,

bccbcc:: [['s@iseeyou.mordor''s@iseeyou.mordor',, 2121,, 'notthegrey@eaglefriends.mid''notthegrey@eaglefriends.mid']],,

Here we have an Array containing two email addresses, thus our `to` line on the email will

have these two recipient addresses.

`CC` and `BCC`

The `send()` method also provides the `cc` and `bcc` options to provide the

corresponding functionality. These two properties behave identically to the `recipients`

property in that they accept a single ID or address as well as an Array containing either or

both.

will CC both `frodo@fly.fool` as well as the Entity record with internal ID `17`. Similarly,

will BCC three different email addresses: `s@iseeyou.mordor`,

`notthegrey@eaglefriends.mid`, and the Entity record with internal ID `21`.

Recipient Limit

Note that the `send()` method is limited to a maximum of `10` recipients across all of

`recipients`, `cc`, and `bcc`.

If you need to send bulk emails to larger audiences, such as with Marketing Campaigns,

there are other methods within `N/email` for that purpose. This cookbook does not cover

those methods, but researching them on your own is a useful exercise.

The methods you'll be interested in researching are:

email.sendBulk()↗

email.sendCampaignEvent()↗

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4358667505.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4431144897.html

/**/**

 * Send an email with HTML in the body * Send an email with HTML in the body

 * *

 * @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/) * @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/)

 */ */

requirerequire(([['N/email''N/email']],, ((emailemail)) =>=> {{

 constconst html html == `̀
 <h1>Really</h1> <h1>Really</h1>

 <p>super big dragons</p> <p>super big dragons</p>

 `̀

 email email..sendsend(({{

 authorauthor:: --55,,

 recipientsrecipients:: 'eric@stoic.software''eric@stoic.software',,

 subjectsubject:: 'Here Be Dragons''Here Be Dragons',,

 bodybody:: html html

 }}))

}}))

Sending HTML emails

As previously mentioned, we can do quite a lot more with the `body` of our email. For

starters, the `body` parameter supports HTML markup:

results in a more emphatic email:

That's all there is to it, but know there are better ways to get HTML into your emails aside

from writing raw HTML in your code. Instead, leverage Templates to generate the HTML for

you.

/**/**

 * Sends an email using an Email Template * Sends an email using an Email Template

 * *

 * @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/) * @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/)

 */ */

requirerequire(([['N/email''N/email',, 'N/render''N/render']],, ((emailemail,, render render)) =>=> {{

 constconst template template == render render..mergeEmailmergeEmail(({{

 templateIdtemplateId:: 1717,,

 entityentity:: {{

 typetype:: 'employee''employee',,

 idid:: 1919

 }}

 }}))

 email email..sendsend(({{

 authorauthor:: --55,,

 recipientsrecipients:: [[1919]],,

 subjectsubject:: template template..subjectsubject,,

 bodybody:: template template..bodybody

 }}))

}}))

<<pp>><<bb>>ItIt’’s Playoffs Time!s Playoffs Time!</</bb>></</pp>>

<<pp>><<bb>>NetSuite invites ${entity.entityId}NetSuite invites ${entity.entityId}</</bb>></</pp>>

Sending Email using a Template

Most of the time when we're sending out business email, we want a consistent look and

feel along with branding and other official information. We typically use company Email

Templates↗ to accomplish this, and thankfully we can leverage these same Templates in

SuiteScript.

The `N/render` module↗ provides enables us to work with Templates. We import the

module and use its `mergeEmail()` method↗ to generate the subject and body of our

email.

Usable Email Templates are listed under `Documents > Templates > Email Templates`.

Rendering Email Templates

`render.mergeEmail()` merges specific record data into an existing Email Template to

generate the `subject` and `body` of an email.

Template `17` used above has this snippet in it:

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_N514744.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_N514744.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4412042824.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_454332824706.html

`mergeEmail()` substitutes data from Employee `19` into the email body like this:

Note you must use the numeric internal ID of the Template; the more friendly text ID that

begins with `custemailtmpl_` is unfortunately not supported.

`mergeEmail()` also supports merging in data from a Support Case (`supportCaseId`), a

Transaction (`transactionId`), a Custom Record (`customRecord`), and a Recipient

(`recipient`). See the `render.mergeEmail()` documentation↗ for more details.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_454332824706.html

/**/**

 * Send an email with a file attached * Send an email with a file attached

 * *

 * @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/) * @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/)

 */ */

requirerequire(([['N/email''N/email',, 'N/file''N/file']],, ((emailemail,, file file)) =>=> {{

 email email..sendsend(({{

 authorauthor:: --55,,

 recipientsrecipients:: 'eric@stoic.software''eric@stoic.software',,

 subjectsubject:: 'Here Be Dragons''Here Be Dragons',,

 bodybody:: 'Really super big dragons''Really super big dragons',,

 attachmentsattachments:: [[filefile..loadload(({{ idid:: 'User Documents/lotr.txt''User Documents/lotr.txt' }}))]]

 }}))

}}))

Sending an Email with an

Attachment

What would email be without the ability to attach files? How else would you send the

funniest GIFs on the internet to Great Aunt Netta?

Here's how we attach files from the File Cabinet to our emails via SuiteScript:

“⚠️ Note that the `attachments` parameter and the `N/file` module are only supported

in server-side scripts. You will need to use this code in the debugger or otherwise adapt

it into a server-side script. ⚠️”

Two approaches I use to do this are:

1. a `beforeLoad` User Event in Testing mode on a seldom-used record type

2. an Admin- or developer-only Suitelet specifically designed as a harness for testing

server-side code

Attaching Files

The `attachments` parameter accepts an Array of `File` instances, so we're free to use

any methods available to us to generate a `File` and attach it to our email.

Here we see the simplest method where we retrieve an existing file from the File Cabinet

under `/User Documents/lotr.txt` using `file.load()`.

An individual attachment cannot exceed `10MB`; the entire message cannot exceed `20MB`.

/**/**

 * Send an email with multiple attachments * Send an email with multiple attachments

 * *

 * @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/) * @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/)

 */ */

requirerequire(([['N/email''N/email',, 'N/file''N/file']],, ((emailemail,, file file)) =>=> {{

 constconst createNewFilecreateNewFile == (()) =>=>

 file file..createcreate(({{

 namename:: 'unexpected-party.txt''unexpected-party.txt',,

 fileTypefileType:: file file..TypeType..PLAINTEXTPLAINTEXT,,

 contentscontents:: 'In a hole ...''In a hole ...',,

 folderfolder:: --2020

 }}))

 email email..sendsend(({{

 authorauthor:: --55,,

 recipientsrecipients:: 'eric@stoic.software''eric@stoic.software',,

 subjectsubject:: 'Here Be Dragons''Here Be Dragons',,

 bodybody:: 'Really super big dragons''Really super big dragons',,

 attachmentsattachments:: [[

 file file..loadload(({{ idid:: 'User Documents/lotr.txt''User Documents/lotr.txt' }})),,

 createNewFilecreateNewFile(())

]]

 }}))

}}))

attachmentsattachments:: [[

 file file..loadload(({{ idid:: 'User Documents/lotr.txt''User Documents/lotr.txt' }})),,

 createNewFilecreateNewFile(())

]]

constconst createNewFilecreateNewFile == (()) =>=>

 file file..createcreate(({{

 namename:: 'unexpected-party.txt''unexpected-party.txt',,

 fileTypefileType:: file file..TypeType..PLAINTEXTPLAINTEXT,,

 contentscontents:: 'In a hole ...''In a hole ...',,

 folderfolder:: --2020

 }}))

Attaching Multiple Files

`attachments` accepts an Array of `File` instances:

We attach multiple files to our email by adding more elements to the Array:

Observe that we're not just limited to existing files; we can generate a new `File`

instance on the fly using `file.create()`, and still attach that to the email without saving

to the File Cabinet:

Resulting in an email like:

/**/**

 * Send an email with the PDF of a Record attached * Send an email with the PDF of a Record attached

 * *

 * @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/) * @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/)

 */ */

requirerequire(([['N/email''N/email',, 'N/render''N/render']],, ((emailemail,, render render)) =>=> {{

 constconst transactionFile transactionFile == render render..transactiontransaction(({{

 entityIdentityId:: 84328432,,

 formIdformId:: 7575

 }}))

 email email..sendsend(({{

 authorauthor:: --55,,

 recipientsrecipients:: 'eric@stoic.software''eric@stoic.software',,

 subjectsubject:: 'Here Be Dragons''Here Be Dragons',,

 bodybody:: 'Also Sales Orders (see attached)''Also Sales Orders (see attached)',,

 attachmentsattachments:: [[transactionFiletransactionFile]]

 }}))

}}))

Attaching Records instead of Files

As previously stated, the `attachments` parameter of `email.send()` accepts any `File`

instance, and in addition to files from the File Cabinet, that can also mean Records. Our

old friend the `N/render` module provides us with several methods for turning Records into

`File`s using Advanced PDF/HTML Templates in our account.

results in an email like:

Rendering Record Attachments

renderrender..transactiontransaction(({{

 entityIdentityId:: 84328432,,

 formIdformId:: 7575

}}))

`N/render` provides several methods, like the `transaction()` method↗ used here, for

transforming Records into `File` instances via Advanced PDF/HTML Templates. When we

invoke `transaction()`, we provide the internal ID of a Transaction record as the

`entityId`.

Which Template NetSuite uses to render the Transaction depends on the Templates

defined by the Custom Form we specify for the `formId`. Note here again we need to

supply the numeric ID of the Custom Form:

The `Email Template` field defines which Advanced PDF Template is used to render the

Transaction Attachment. The `Email Message Template` field defines which Email Template

is used to render the body of the email.

Because `transaction()` returns a `File` instance, we can directly use its output in the

`attachments` Array for our email. See the `N/render` module documentation↗ for the list

of additional supported methods and their details.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_452452331542.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4412042824.html

/**/**

 * Link an email to multiple Records without attaching those Records * Link an email to multiple Records without attaching those Records

 * *

 * @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/) * @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/)

 */ */

requirerequire(([['N/email''N/email',, 'N/render''N/render']],, ((emailemail,, render render)) =>=> {{

 constconst salesOrderId salesOrderId == 84328432

 constconst transactionFile transactionFile == render render..transactiontransaction(({{

 entityIdentityId:: salesOrderId salesOrderId,,

 formIdformId:: 7575

 }}))

 email email..sendsend(({{

 authorauthor:: --55,,

 recipientsrecipients:: 'eric@stoic.software''eric@stoic.software',,

 subjectsubject:: 'Here Be Dragons''Here Be Dragons',,

 bodybody:: 'Also Sales Orders (see attached)''Also Sales Orders (see attached)',,

 attachmentsattachments:: [[transactionFiletransactionFile]],,

 relatedRecordsrelatedRecords:: {{

 transactionIdtransactionId:: salesOrderId salesOrderId,,

 customRecordcustomRecord:: {{

 recordTyperecordType:: 'customrecord_order_notifications''customrecord_order_notifications',,

 idid:: 1772317723

 }}

 }}

 }}))

}}))

Linking Emails to Records

When you send an email from a Record in NetSuite's UI, the message is automatically

linked to that Record's `Communications` tab for reference later. However, when you send

an email via SuiteScript, we have to be a bit more explicit in order to link our email to

specific Records.

`email.send()` will automatically link the message to the `author` Employee record as well

as any `recipients` specified by Internal ID. If you specify a Recipient with an Email

Address, NetSuite will not try to match them up to a Record, and thus will not link the

message to that Recipient. In order to link our message to certain Records, `email.send()`

provides us with the `relatedRecords` parameter.

This results in a link on the `Communications` tab of each specified Record instance:

relatedRecordsrelatedRecords:: {{

 transactionIdtransactionId:: salesOrderId salesOrderId,,

 customRecordcustomRecord:: {{

 recordTyperecordType:: "customrecord_order_notifications""customrecord_order_notifications",,

 idid:: 1772317723

 }}

}}

`relatedRecords`

`relatedRecords` is an `Object` structure which provides us the means to link our message

to several different types of Records. Here we see an example of linking our message to

both the Sales Order we've rendered and attached, as well as linking our message to an

instance of a Custom Record we have in our account:

See the `relatedRecords` documentation↗ for the details of our other options for linking to

records.

Be aware that for each record type we can link to, we can only link to a single instance of

that record type. For instance, since our example already links to a Sales Order, we cannot

also link it to another Transaction, like an Invoice. We can only link to one instance of each

record type.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4358681681.html#bridgehead_4365582234

Recommendations and Resources

NetSuite Help

NetSuite Help is the most definitive reference for SuiteScript and all of its capabilities. I

recommend studying the following articles and any related sub-articles:

N/email Module↗

N/email Examples↗

email.send(options)↗

email.send.promise(options)↗

Transaction System Information and Communication Subtabs↗

Promise Object↗

The Records Browser

The Records Browser↗ is an absolutely crucial tool for creating effective searches. There is

a new version of the Records Browser for every version of NetSuite. The 2023.2 version

can be found in NetSuite Help↗.

If you are unfamiliar with the Records Browser, see SuiteScript Records Browser↗ in the

Help documentation and my tutorial.

Mozilla Developer Network

SuiteScript is a library on top of JavaScript, and the best JavaScript reference manual is the

Mozilla Developer Network↗.

While not related specifically to NetSuite, this site is an excellent source of JavaScript

reference material, examples, and tutorials.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4358552361.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_157072550759.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4358681681.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4440805906.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_N554714.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4387812940.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2023_2/script/record/account.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2023_2/script/record/account.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_1527577879.html
https://stoic.software/effective-suitescript/records-browser/
https://developer.mozilla.org/

About the Author

My name is Eric T Grubaugh. I run the Sustainable SuiteScript community for NetSuite

developers. I founded Stoic Software in 2016 to help others lead successful, sustainable

careers as NetSuite developers.

The "Sustainable SuiteScript" Community

We are a small community of NetSuite developers who want to deepen their technical

skills, expand their professional network, and raise the bar for SuiteScript development.

Join us today.

Questions, Comments, Corrections

If you have any questions, comments, or corrections on this document, please email them

to me at eric+cookbooks@stoic.software.

Get in Touch

The best way to keep in regular contact with me is to join the Sustainable SuiteScript

mailing list. I read and respond to all emails I receive there.

I create SuiteScript videos on YouTube.

You can also connect with me on LinkedIn.

https://www.linkedin.com/in/erictgrubaugh
https://www.linkedin.com/in/erictgrubaugh
https://stoic.software/community/
mailto:eric+cookbooks@stoic.software
https://stoic.software/
https://youtube.com/@StoicSoftware?sub_confirmation=1
https://youtube.com/@StoicSoftware?sub_confirmation=1
https://www.linkedin.com/in/erictgrubaugh
https://www.linkedin.com/in/erictgrubaugh

