Basic Searching with SuiteScript 2.1

written by Eric T Grubaugh

part of the "SuiteScript by Example" » series

published by Stoic Software, LLC

https://stoic.software/
https://suitescriptbyexample.com/
https://stoic.software/

Basic Searching with SuiteScript 2.1

by Eric T Grubaugh

Copyright (c) 2017- Stoic Software, LLC. All rights reserved.

Published by Stoic Software, LLC, PO Box 129, Wellington, CO 80549.

NetSuite and SuiteScript are registered trademarks of Oracle and/or its affiliates. Other

names may be trademarks of their respective owners.

Neither the author nor the publisher have any affiliation with Oracle Corporation or
NetSuite, Inc. This product is neither endorsed nor sponsored by Oracle Corporation or
NetSuite, Inc.

Using Code Samples

This book is here to help you learn. In general, you may use the code presented herein in
your own code. You do not need to contact me unless you are reproducing or redistributing
large portions of the code.

| appreciate, but do not require, attribution. An attribution usually includes the title,
author, and publisher:

"Basic Searching with SuiteScript 2.1, by Eric T Grubaugh (Stoic Software, LLC).
Copyright 2017 Stoic Software, LLC."

https://stoic.software/
https://stoic.software/

Introduction

This SuiteScript cookbook is intended to provide you with simple, practical examples of
performing basic searches with the SuiteScript API.

In Basic Searching with SuiteScript 2.1, you'll see examples of:

The fundamentals of creating and executing a Search with SuiteScript
The various methods of iterating over and processing search results
How to load and execute a Saved Search in SuiteScript

How to specify Joins to related records in your search filters and columns
How to use Summaries like summing in your search results

How to create Filter Expressions for your searches

How to get the number of results for a particular search

Conventions in this Book

All code examples in this book use the “require function for defining modules. This allows
you to copy and paste the snippets directly into the debugger or your browser's developer
console and run them.

The “N/search™ module is always imported as “s".

“console.log" is used for writing output to the browser console. If desired, you can replace
these with calls to the “N/log” module » for writing to the Execution Log for the debugger.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4574548135.html

The Anatomy of a SuiteScript
Search

In our first example, we create a Customer Search that retrieves all Customers located

within the state of California:

require(['N/search'], (s) => {
const customerSearch = s.create({
type: s.Type.CUSTOMER,
filters: [
{
name: 'state',
operator: s.Operator.ANYOF,
values: ['CA']
}
1
columns: [

{

name: 'entityid'

{

name: 'email'

const printCustomerNameAndEmail = (result) => {
const customerName = result.getValue({ name: 'entityid' })
const email = result.getValue({ name: 'email' })

console.log(${customerName} - ${email})

return true

customerSearch.run().each(printCustomerNameAndEmail)

1)

The "N/search module

All searching functionality in SuiteScript is provided by the “N/search® module.

require(['N/search'], (s) => {

The basic formula for searching with the SuiteScript API goes like this:

1. Create a new “search" instance OR /oad an existing Saved Search
2. Specify the Record Type, Filters, and Columns of our Search

3. Execute the Search

4. Retrieve the Results of the Search

5. Process the Results

Creation of a search with “s.create"

Here we import the “N/search™ module as “s* and use its “create” method to accomplish
steps 1 and 2 of our basic formula. We create a Search instance by specifying its Record
Type, Filters, and Columns.

We start by defining the Search's Record Type with the “type™ property of “create’. We
provide it a value using the “N/search™ module's “Type™ enumeration for native records.
For custom records, we instead enter the Custom Record's ID as a literal String (e.g. ~type:

'customrecord_my_rec'").

customerSearch = s.create({
: s.Type.CUSTOMER,

For a list of all possible values for the “Type® enumeration, see the Help page
search.Type ~.

Specifying Filters

Next, we provide our Search's Filters (also called "Criteria" in the Ul) using the ~filters"
property. We will explore a couple different ways to specify Filters. The first way that you

see here is by creating an Array of Objects:

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4483165708.html

'state’',
: S.Operator.ANYOF,

['CA']

Each element of the Array defines one Filter by providing:

a “name" to identify the field to be filtered
an “operator for how the field will be compared

the “values" to compare the field to
We could optionally include in each Filter:

a “join" to filter on fields from related records

a “summary to filter on summarized values like “COUNT"S or “SuM"s

If you provide multiple Filters in this Array, they will all have a logical “AND" relationship, so
a Record must match all of your Filters to be included in the results. With this syntax, there
is no way to specify an “oR" relationship for Filters. Later, we'll explore a different syntax
that does enable “oR" relationships.

Specifying Columns
To finish off the creation of our “search" instance, we specify the Columns (also called

"Results" in the Ul) that will be included in the results. We specify Columns using the

“columns” property of “create".

'entityid'

'email’

Each element of the “Array" defines one “column” by providing:

a “name’ to identify the field to be included in the results

We could optionally include in each Column:

a “join" to retrieve fields from related records

a “summary” to summarize that field with say a “COuNT" or “sum®

Notice we also specify the “summary™ with an enumeration. To see the possible Summary
types, see the Help page search.Summary ~.

Executing the Search

Creating the “search" instance is not enough to actually execute the Search. In order to do

that, we need to invoke the “run® method on our “Search" instance.

customerSearch.run()

This will execute our Search on the NetSuite server and save the results there for when
our script is ready to retrieve them, but it sti// doesn't actually give us the search results.

There is one more step to actually process the results.

Iterating with “each”

In this case, we want to retrieve our Search's results immediately, so we can directly chain
our “run" call with a call to the ~each" iterator. We use “each" to process results one at a

time.

We define a function “printCustomerNameAndEmail" that contains the logic for processing a
single result. As the name implies, all we want to do is print each Customer's Name and

Email to the browser console.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4345777923.html#search.Summary

printCustomerNameAndEmail = (result) => {
customerName = result.getValue({ : 'entityid' })
email = result.getValue({ : 'email' })

console.log(${customerName} - ${email})

true

}

customerSearch.run().each(printCustomerNameAndEmail)

The callback function for “each® must return a Boolean value:

“true” to continue iterating to the next result

“false” to stop iterating
“A Returning nothing is the same as returning ~false and will stop iteration. A”

We can use this behaviour to conditionally stop processing our results once certain
conditions are met.

If you are trying to process results with “each™, but only see one result getting processed,

it is very likely you forgot the “return” statement in your callback function.

Note that using “run()" and “each” will only iterate through, at most, “4,000" results.

Reading Result Data with “getvalue®

As the “each™ method iterates over our Search Results, it passes them individually into the
callback function we specified, “printCustomerNameAndEmail™. The parameter passed in is
an instance of “N/search.Result, which has a “getvalue® method for reading the value
from a particular ~column":

customerName = result.getValue({ : 'entityid' })

email = result.getValue({ : 'email' })

For Select fields (dropdowns), ~getvalue™ will always return the internal ID of the selected
record. If instead, you want to display the text displayed in the Select field, you can use

“getText .

For example, if we were to add the “salesrep™ Column to our Search, we would retrieve

the Sales Rep's ID and Name values this way:

salesRepId = result.getValue({ : 'salesrep' })
salesRepName = result.getText({ : 'salesrep' })

console.log(Sales Rep ID: ${salesRepId})
console.log(Sales Rep Name: ${salesRepName})

A More Concise Search

As we saw in the first example, our Search Filters and Columns can be created as Arrays of
Objects, but this gets really verbose for searches with multiple Filters and Columns. For
simple searches, there is a much more concise way of specifying our Filters and Columns:

require(['N/search'], (s) => {
customerSearch = s.create({
: s.Type.CUSTOMER,

[

['state', s.Operator.ANYOF, ['CA']]

1,
['entityid', 'email']

1)

printCustomerName = (result) => {
console.log(result.getValue({ : 'entityid' 3}))
true

b

customerSearch.run().each(printCustomerName)

1)

Functionally, this is an identical search to that of the first chapter, but we've saved

ourselves a bit of typing.

Filter Expressions

We condense our Filters down by using what NetSuite calls a Filter Expression instead of

our previous Array of Objects:

|
['state', s.Operator.ANYOF, ['CA']]

1

The Filter Expression includes exactly the same data as before:

a “name’ to identify the field to be filtered
an “operator’ for how the field will be compared

the “values™ to compare the field to

Instead of being an Array of Objects, we now have an Array of Arrays. It may look a bit
confusing at first, but once you are accustomed to it, | feel it is a very compact, readable
expression of Filters.

The remainder of the examples in this cookbook will utilize the Filter Expression syntax.

Columns by Name Only

We also condense our Columns down to string literals. For any Column that doesn't involve

a Join or a Summary, we can specify the name of the column as a string literal:

['entityid', 'email']

Note that nothing else about how we execute the search, iterate through results, or

retrieve the values of our columns has changed.

How Many Results Does My Search
Have?

Because “run().getRange()" is limited to “1,000" results and “run().each()" is limited to
*4,000° results, we cannot rely on either method to return al/l results that match our

criteria.

For the most convenient and accurate way to count the number of results that a particular
Search will return, we need to execute our search using the Search module's Paging API.
The Paging API is primarily intended to page through large result sets, but it also contains
the quickest method of getting a total result count using its “count™ property.

require(['N/search'], (s) {

customerSearch = s.create({
: s.Type.CUSTOMER,

L
['state', s.Operator.ANYOF, ['CA']]

]
1)

customerCount = customerSearch.runPaged().count
console.log(# Customers in CA = ${customerCount})

1)

We create our “search" instance with the “create® method just as we did before. This time,
instead of executing our search using the “run()" method, we use the “runPaged()"

method, which returns a “Pagedbata’ instance as opposed to a “ResultSet" instance.

customerCount = customerSearch.runPaged().count

console.log(# Customers in CA = ${customerCount})

The “Pagedbata object has a “count™ property which contains the total number of results

that match the search criteria.

We'll investigate the Paging API and large datasets later in our exploration of the Search
module.

"AND" Relationships in Filter
Expressions

So far we've only seen how to specify a single Filter in our Filter Expression. Let's make our
previous example a little more generic. We'll create a function that searches for

Customers by a given State and Sales Rep that we provide:

require(['N/search'], (s) => {
const findCustomersByStateAndRep = (state, salesRepId) =>
s.create({
type: s.Type.CUSTOMER,
filters: [
['state', s.Operator.ANYOF, [state]], 'and',
['salesrep', s.Operator.ANYOF, salesRepId]

1

columns: ['entityid',6 ‘'email']

}).run()

const printCustomerName = (result) => {
console.log(result.getValue({ name: 'entityid' }))
return true

findCustomersByStateAndRep('CA', '45').each(printCustomerName)
1)

We have moved our Search creation inside a function that accepts parameters for the

State and Sales Rep:

const findCustomersByStateAndRep = (state, salesRepId) =>
s.create({
type: s.Type.CUSTOMER,

filters: [
['state', s.Operator.ANYOF, [state]], 'and',

['salesrep', s.Operator.ANYOF, salesRepId]
1,
columns: ['entityid', 'email']

}).run()

The function creates and immediately runs the search, returning the “ResultSet" instance
created by “run()".

This pattern of creating the Search instance and returning it from a function named
“find*" is a convention | use to isolate my search logic. | find that this makes it easier to

comprehend, modify, and reuse my Searches.

Focusing in on our Filter Expression, you can see that we've added a second filter and
placed an ~'and'" between them:

C L
['state', s.Operator.ANYOF, [state]], 'and',

['salesrep', s.Operator.ANYOF, salesRepId]
1,

This shows us a more general pattern of Filter Expressions:

filter1,
logicalOperatori,
filter2,

logicalOperator2,
filters,

Where ~filterN" is in the format ~[fieldName, operator, values] , and “logicalOperatorN"

is one of “'and'" or “'or'", depending on the logical relationship between the filters.

The Ul equivalent of SuiteScript's Filter Expressions is checking the Use Expressions box in

a Saved Search's Criteria tab.

"0R” Relationships and Grouping
Criteria

In addition to “AND" relationships between our Filters, we can also have “oR" relationships
between them. Beyond that, we can build complex Filters by logically grouping Filters

together.

Let's create a Search with a more complex Filter structure of A AND (B OR C):

require(['N/search'], (s) => {
findProblemCustomersByRep = (salesRepId) =>
s.create({
: s.Type.CUSTOMER,
|
['salesrep', s.Operator.ANYOF, salesRepId], 'and',

[
['overduebalance', s.Operator.GREATERTHAN, @], 'or',

['credithold', s.Operator.ANYOF, 'ON']
]
1
['entityid', 'email']

1) .run()

printCustomerName = (result) => {
console.log(result.getValue({ : 'entityid' 3}))
true

findProblemCustomersByRep('17"').each(printCustomerName)

1)

We've encapsulated our Search in the ~findProblemCustomersByRep~ function.

"0R” Relationships

First let's focus on how we specify the “oR" relationship between Filters. Ultimately, all

we're doing is changing the ~'and'* we have been using to an “'or'® where appropriate:

['overduebalance', s.Operator.GREATERTHAN, 0], 'or',

['credithold', s.Operator.ANYOF, 'ON']

Now our Search will find Customers that meet either (or both) of these criteria.

Logically Grouping Criteria

We have the " (B OR c)" portion of our Filters, but we also want to filter our results down by

a specific Sales Rep to get the “A AND" portion.

We do that by first nesting our “overduebalance™ and “credithold" filters within their own
Array, thus logically grouping them together:

[
['overduebalance', s.Operator.GREATERTHAN, 0], 'or',

['credithold', s.Operator.ANYOF, 'ON']
]

Although it's not necessary to write it out so verbosely, it might help to walk through it this

way:

salesRepFilter = ['salesrep', s.Operator.ANYOF, salesRepIld]
overdueFilter = ['overduebalance', s.Operator.GREATERTHAN, 0]
creditFilter = ['credithold', s.Operator.ANYOF, 'ON']

problemCustomerFilter = [overdueFilter, 'or', creditFilter]

customerSearch.filters = [salesRepFilter, 'and', problemCustomerFilter]

Note that nothing at all has changed about the way we iterate through and process our

results.

Favor Filter Expressions

There is no way to create an "oR" relationship using the Object syntax for Filters; there is
also no way to logically group Filters using the Object syntax. These can only be

accomplished with Filter Expressions.

Because of this power and flexibility that Filter Expressions have over the Object syntax,
and the more concise nature of Filter Expressions, | only use the Object syntax when
absolutely necessary. In all other cases, | use Filter Expressions to define my Search

Filters.

Retrieving Data from Related
Records

So far all of our searches have only retrieved data from the exact records that show up in
our results. We know from navigating the Ul that those records are related to many other

records.

For instance, the Customers we have been searching are related to Sales Reps, to
Contacts, to Transactions. Can we use our searches to retrieve data from these records as

well?
Of course we can! We do this using "joins" in our Filters and Columns.

Let's expand our previous example to retrieve not only the Customer's main email
address, but also the email address of the Primary Contact:

require(['N/search'], (s) => {
findProblemCustomersByRep = (salesRepId) =>
s.create({
s.Type.CUSTOMER,
;[

['salesrep', s.Operator.ANYOF, salesRepId], 'and',
['salesrep.isinactive', s.Operator.IS, 'F'], 'and',
[

['overduebalance', s.Operator.GREATERTHAN, 0], 'or',

['credithold', s.Operator.ANYOF, 'ON']

]
1

['entityid', 'email', 'contactprimary.email']

}).run()

printPrimaryContactEmail = (result) => {
console.log(result.getValue({ : 'email', : 'contactprimary' }))
true

findProblemCustomersByRep('17"').each(printPrimaryContactEmail)
1)

Specifying Join Columns

Here, we are adding a Column to our results:

['entityid', 'email', 'contactprimary.email']

The format for a joined column uses a simple dot syntax: ~'joinId.columnId'".

To see the available Joins for a specific Record Type, find the Record Type in the Records

Browser and explore the "Search Joins" section.

Reading Data from Join Columns

We've renamed our iteration function to “printPrimaryContactEmail”™ and updated it

accordingly.

When we go to read the value of a Join column, there is a slight addition to our “getvalue"

call:

result.getValue({ : : 'contactprimary' })

We must specify the additional “join~ property to properly retrieve the value for the Join

column. The same addition would apply to the ~getText™ method as well.

Specifying Join Filters

We can also filter our Searches based on data from related records using Join Filters. The
syntax for a Join Filter is exactly the same as a Join Column, with the dot syntax:

“'joinId.filterId'".

Notice in our example, we also wanted to make sure our Sales Rep record was not

inactive, so we added a “salesrep.isinactive" Filter:

['salesrep.isinactive', s.Operator.IS, 'F'], 'and',

Filtering by Empty Fields

It is often the case that we will need to search for an empty field. How we filter for empty
fields will vary depending on the type of field.

Empty Text-Like Fields

Let's look first at text fields by finding all Customers that don't have an email address:

require(['N/search'], (s) => {
customerSearch = s.create({
: s.Type.CUSTOMER,
C L
['email', s.Operator.ISEMPTY, '']
1,
: ['entityid', 'email']

1)

printCustomerName = (result) => {
console.log(result.getValue({ : 'entityid' }))
true

}

customerSearch.run().each(printCustomerName)

1)

Text fields have an Operator called “ISEMPTY" that matches empty fields.

Note that the empty String ~''" is required even when we use “ISEMPTY" . If you forget this

value, you will receive an Error with a message similar to

“Wrong parameter type: filters is expected as Array.”

Empty Select Fields

Select fields (dropdowns) do not have the same “ISEMPTY" Operator, so we need to specify
our filter differently. NetSuite has made up a special value for empty Select fields. Let's

modify our example to locate all Customers with no assigned Sales Rep:

require(['N/search'], (s) => {
const customerSearch = s.create({
type: s.Type.CUSTOMER,
filters: [
['salesrep', s.Operator.ANYOF, '@NONE@']

1,
columns: ['entityid', 'email']

1)

const printCustomerName = (result) => {
console.log(result.getValue({ name: 'entityid' }))
return true

customerSearch.run().each(printCustomerName)

1)

We use the special “@NoNE@" value to filter on an empty Select field. If we want records
where the specified field /s empty to match, we use “ANYOF™ and “@NONE@". If instead we
want records where the specified field /s not empty to match, we would use “NONEOF" and
“@NONEQ@".

To determine which Search Operators are available for specific Field Types, see the Help
article SuiteScript 2.x Search Operators

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/article_4094344956.html#SuiteScript-2.x-Search-Operators

Loading and Executing a Saved
Search

Thus far we've been creating our own SuiteScript Searches from scratch, but we can also

leverage Saved Searches within our Scripts.

Instead of using “s.create” to make a new Search, we can instead use “s.load" to load an

existing Saved Search:

require(['N/search'], function (s) {
const customerSearch = s.load({ id: 'customsearch_customers_in_ca' })

customerSearch.filters = [
...customerSearch.filters,

{

name: 'salesrep',
operator: s.Operator.ANYOF,

values: ['@NONEQ@']

customerSearch.columns = [
...customerSearch.columns,
'email',
'contactprimary.email'

const printCustomerName = (result) => {
console.log(result.getValue({ name: 'entityid' }))

return true

customerSearch.run().each(printCustomerName)

1)
We only need to provide the Internal ID of the Saved Search to “load".

const customerSearch = s.load({ id: 'customsearch_customers_in_ca' })

Let's presume our Saved Search here finds all Customers in California, but in our Script we

need to add some additional criteria and result data.

Once the Saved Search is loaded, we are free to modify the Search Filters and Columns

beyond what is set in the Saved Search using its “filters™ and “columns” properties:

customerSearch.filters = [
...customerSearch.filters,
{
'salesrep',
: S.Operator.ANYOF,
["@NONE@']
3
]

customerSearch.columns = [
...customerSearch.columns,
'email',
'contactprimary.email'

“In case you are newer to SuiteScript 2.1 and its more recent syntax, the ... is the
destructuring operator ». It's a powerful operator that you'll see in the wild and in many

of my code examples, so it's worth studying intently.”

Here we've added a Filter so that we're only finding the Customers in California that don't
have a Sales Rep, and we've also added the Email Address and Primary Contact's Email
Address as Columns.

The ~filters™ and “columns” properties are standard JavaScript Arrays, so you can
manipulate them using any Array method you would normally use for
adding/removing/modifying elements of an Array.

Once again, nothing changes in the way we iterate through or process results.

Saving Modifications to a Saved Search

Changes to Filters and Columns of the loaded Search instance will only apply to the Search
in our Script; they will not be saved back to the NetSuite Ul.

If you want the changes you make in your Script to be saved back to the Saved Search

itself, then you can call “save® on the Search instance after you've made the changes:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

customerSearch.save()

Frequently Asked Questions

How do | find the name/ID for a specific Filter?

Find your Record Type in the Records Browser », and explore the "Search Filters" section.

The value in the Internal ID column is what you'll use as your Filter name.

How do | find the name/ID for a specific Column?

Find your Record Type in the Records Browser », and explore the "Search Columns"

section. The value in the Internal ID column is what you'll use as your Column name.

How do | find the name/ID for a specific Join?

Find your Record Type in the Records Browser », and explore the "Search Joins" section.

The value in the Join ID column is what you'll use as your Join hame.

There's a Records Browser, a Schema Browser, and a
Connect Browser. What's the difference?

Records Browser - Used for accessing Record data via SuiteScript
Schema Browser - Used for accessing Record data via SuiteTalk

Connect Browser - Used for accessing Record data via ODBC

When you're writing SuiteScript, you can safely focus only on the Records Browser.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2023_2/script/record/account.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2023_2/script/record/account.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2023_2/script/record/account.html

Recommendations and Resources

NetSuite Help

NetSuite Help is the most definitive reference for the “N/search™ module and all of its
capabilities. | recommend studying the following articles and any related sub-articles:

N/search Module »~

N/search Module Script Samples »~

search.Type »

search.Summary »

SuiteScript 2.x Search Operators »

search.Filter »

search.filterExpression »~

search.Column »

The Records Browser

The Records Browser is an absolutely crucial tool for creating effective searches. There is a
new version of the Records Browser for every version of NetSuite. The 2023.2 version can
be found in NetSuite Help ~.

If you are unfamiliar with the Records Browser, see SuiteScript Records Browser » and my

tutorial article.

Use the Search Ul

A great way to both learn about and verify your SuiteScript searches is to actually build
the search in the Ul first, then translate it into SuiteScript.

By doing this, you can quickly verify that the Filters and Columns you're specifying
actually give you the correct results before you even start writing code.

NetSuite Search Export Chrome Plugin

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4345764122.html#subsect_87180423808
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_0304061100.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4483165708.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4345777923.html#search.Summary
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/article_4094344956.html#SuiteScript-2.x-Search-Operators
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4345767603.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_458440490721.html#Search.filterExpression
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4345767216.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2023_2/script/record/account.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_1527577879.html
https://stoic.software/effective-suitescript/records-browser/
https://stoic.software/effective-suitescript/records-browser/

There is a very helpful Chrome Plugin called "NetSuite Search Export" built by g David

Smith. The Plugin will automatically generate SuiteScript for any Saved Search in your
account. You can find it on the Chrome Plugin Store »

To use this plugin:

1. Create a Saved Search in the Ul

2. Save the search

3. Click the "Export to Script" link near the top right

https://www.linkedin.com/in/davidcrsmith/
https://www.linkedin.com/in/davidcrsmith/
https://www.linkedin.com/in/davidcrsmith/
https://chrome.google.com/webstore/detail/netsuite-search-export/gglbgdfbkaelbjpjkiepdmfaihdokglp

About the Author

My name is B Eric T Grubaugh. | run the Sustainable SuiteScript community for NetSuite

developers. | founded Stoic Software in 2016 to help others lead successful, sustainable
careers as NetSuite developers.

The "Sustainable SuiteScript" Community

We are a small community of NetSuite developers who want to deepen their technical
skills, expand their professional network, and raise the bar for SuiteScript development.

Join us today.

Questions, Comments, Corrections

If you have any questions, comments, or corrections on this document, please email them

to me at eric+cookbooks@stoic.software.

Get in Touch

The best way to keep in regular contact with me is to join the Sustainable SuiteScript

mailing list. | read and respond to all emails | receive there.

| create SuiteScript videos on @ YouTube.

You can also connect with me on fgLinkedIn.

https://www.linkedin.com/in/erictgrubaugh
https://www.linkedin.com/in/erictgrubaugh
https://stoic.software/community/
mailto:eric+cookbooks@stoic.software
https://stoic.software/
https://youtube.com/@StoicSoftware?sub_confirmation=1
https://youtube.com/@StoicSoftware?sub_confirmation=1
https://www.linkedin.com/in/erictgrubaugh
https://www.linkedin.com/in/erictgrubaugh

