Managing Files with SuiteScript 2.1

written by Eric T Grubaugh

part of the "SuiteScript by Example" » series

published by Stoic Software, LLC

https://stoic.software/
https://suitescriptbyexample.com/
https://stoic.software/

Managing Files with SuiteScript 2.1

by
Copyright (c) 2017- . All rights reserved.
Published by Stoic Software, LLC, PO Box 129, Wellington, CO 80549.

NetSuite and SuiteScript are registered trademarks of Oracle and/or its affiliates. Other

names may be trademarks of their respective owners.

Neither the author nor the publisher have any affiliation with Oracle Corporation or
NetSuite, Inc. This product is neither endorsed nor sponsored by Oracle Corporation or
NetSuite, Inc.

Using Code Samples

This book is here to help you learn. In general, you may use the code presented herein in
your own code. You do not need to contact me unless you are reproducing or redistributing
large portions of the code.

| appreciate, but do not require, attribution. An attribution usually includes the title,
author, and publisher:

"Managing Files with SuiteScript 2.1, by Eric T Grubaugh (Stoic Software, LLC).
Copyright 2017 Stoic Software, LLC."

https://stoic.software/
https://stoic.software/

Introduction

Managing Files with SuiteScript 2.1 is intended to provide you with practical examples for
interacting with the File Cabinet in your SuiteScript.

In this SuiteScript Cookbook, you'll see examples of:

Loading an existing file
Creating a new file
Relocating a file
Deleting a file

Stream data into a file

Read contents of a file line by line

Patterns in this Book

All code examples are written in SuiteScript 2.1.

The “N/file” module is always imported as “f".

Initial Setup

The “N/file” module allows us to interact with the contents of NetSuite's File Cabinet.

Before we can get to working with those files, there's a little setup work to do first.
“N/file” can only be used in server-side scripts, meaning we can't drop code in the
browser console and expect it to work.

Instead, we're going to build a Suitelet that will interact with our files for us.

We'll start by building a custom module file. This is where we'll be adding and changing
the code from the upcoming examples:

/**
* Custom module for executing N/file cookbook examples

*

* @NApiVersion 2.1
* @NModuleScope SameAccount

*

* @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/)
“

define(['N/file'], (f) => {
// This 1s where our example code will go

1)

We'll walk through this code in detail shortly.

1. Create a folder in the File Cabinet at “/SuiteScripts/file-cookbook/"
2. Upload the above source code into the new folder in a file named ~file-cookbook.js".

3. From now on, | will refer to this file as the " file-cookbook™ module".

/**
* Suitelet for testing File interactions

* @NApiVersion 2.1
* @NModuleScope SameAccount
* @NScriptType Suitelet

* @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/)
Wy
define(['./file-cookbook', 'N/https'], function (fileCookbook, https) {
/** @see https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4407
const onRequest = (context) => {
log.audit({ title: context.request.method + ' request received' })

// Ignore POST requests
if (context.request.method !== https.Method.GET) {
return

fileCookbook.readFile(context.response)

log.audit({ title: 'Request complete.' })

return { onRequest }

1)

1. Use the above source code to create a second file in the same folder as before.

2. Use this second file to “suitelet” » named File Interaction.
3. o] [o} ~» for the Suitelet; leave it in “Testing" status.
4. On the Deployment, "Link” ~ in the “Links® sublist. Locate it somewhere

accessible to the Role you'll be using to test the examples in this book. For me, using

the Administrator Role, | chose “classic Center > Setup > Custom > File Interaction’.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4489062315.html#procedure_4489062240
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_0706024425.html#procedure_1557886205
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_1524082595.html#bridgehead_1524083321

Script Deployment

m Back Actions =

Render a PDF

TITLE
Render 2 PDF

_sl_render

Audience+ Links+ Execution Log System Motes
CENTER SECTION CATEGORY

Classic Center Setup Custom

“A If either of these code files is named differently or is not in the same folder, you will

likely receive "MODULE_NOT_FOUND " errors when attempting to access the Suitelet.”

This Suitelet is our test runner for working with files. Whenever we need to test one of our
code examples, we access the link for the Suitelet in NetSuite's main navigation, and we

can monitor the resulting on the Suitelet record.

For the remainder of the cookbook, you should not need to make any modifications to the
Suitelet or its source code.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4375896105.html#Using-the-Script-Execution-Log-Tab

Load contents of an existing File

We'll start by reading the contents of existing files. Add a new function named “readFile"
to the ~file-cookbook™ module:

/**

* Custom module for executing N/file cookbook examples

*

*

@NApiVersion 2.1
@NModuleScope SameAccount

*

*

* @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/)
“y
define(['N/file'], (f) => {
const readFile = (response) => {
const text = [

f.load({ id: 7825 }).getContents(),
f.load({ id: 'Cookbook Files/lost.txt' }).getContents(),

f.load({ id: './help.txt' }).getContents()
]1.join('\r\n")

response.write({ output: text })

3

return { readFile }

1)

The “N/file” module provides a “load()" method for retrieving existing “File" instances.

I've made three different sample files in my File Cabinet to showcase that we can load a
file using three different means:

1. by its internal ID: “f.load({id: 7825})"

2. by its absolute path, relative to the File Cabinet root: ~f.load({id: 'Cookbook
Files/lost.txt'})"

3. by its path relative to the currently executing script: “~f.load({id: './help.txt'})"
“You will need to adjust the IDs and paths for files that exist in your File Cabinet.”

“File" instances have a “getContents()" ~ which will return the contents of the
“File® as a “string’.

Here we load three “File" instances and place their contents in an Array, then we ~join()~
/» into a single “string".

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4229269811.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/join
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/join

Once you've updated this code with files that exist in your File Cabinet, navigate to the
Suitelet via the Link you created on the Deployment. You should see the contents of all
three files concatenated and displayed in your browser.

Many who wander

are actually lost

and could really use some help
finding their way.

Other File Properties

Once a “File" has been loaded, there are a few other pieces of information we can

retrieve in addition to the contents.

Adjust the “readFile" function like so:

readFile = (response) => {
file = f.load({ : './help.txt"' })

output
<p>File Size (bytes): ${file.size}</p>
<p>File Path: ${file.path}</p>
<p>File URL: ${file.url}</p>
<p>Is Text Type? ${file.isText}</p>

response.write({ output })

3

Once the “file-cookbook™ module is updated, refresh the Suitelet page, and you should

see something like:

File Size (bytes): 50

File Path: SuiteScripts/file-cookbook/help.txt
File URL: /core/media/media.nl?id=7827&c=TSTDRV1}

[s Text Type? true

See the “File" for details on the properties and methods

of the “File" instance.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4205693274.html#bridgehead_4223145668

Create a new File

We're not limited to working with existing files; we can also create them via script:

const readFile = (response) => {
f.create({
fileType: f.Type.PLAINTEXT,
name: 'alliteration.txt',
folder: -15,
contents: 'How much wood would a woodchuck chuck'

}) .save()

response.write({ output: 'File created.' })

3

The method for creating files is “file.create() . The only required parameters are

“fileType™ and “name’. Note that the “name" should include the file extension explicitly.

In addition, we can directly provide the ~folder® where the file should be saved. You must

provide the numeric ID of the folder; it cannot be a path.

f.create({
fileType: f.Type.PLAINTEXT,
name: 'alliteration.txt',
folder: -15,
contents: 'How much wood would a woodchuck chuck'

1)

Once we've created the “File" instance with “create()", we then invoke its “save()~

~ to store it in the File Cabinet.

f.create({
// .

})-Savé&)

Other Options

There are a few additional parameters we can specify at creation time:

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4229271179.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4229271179.html

const readFile = (response) => {
f.create({

fileType: f.Type.PLAINTEXT,
name: 'alliteration-again.txt',
folder: -15,
contents: '"How much wood would a woodchuck chuck',
description: 'If a woodchuck could chuck wood?',
encoding: f.Encoding.ISO_8859 1,
isInactive: false,
isOnline: true

}) .save()

response.write({ output: 'File created again.' })

“description” sets the Description field on the File record when viewing it in the Ul

“encoding” sets the Character Encoding of the File using the ~file.Encoding

Z

“isInactive” enables (“true”) or disables (" false") the File's “inactive" flag

“isonline” enables (" true) or disables (" false) the “Available without Login" setting

on the File

See the ~file.create()" ~» for details.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4228998505.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4228998505.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4223861820.html

\NCERALLE

To relocate an existing file to another folder; we set the “File" instance's ~folder"
2

const readFile = (response) => {
const wander = f.load({ id: 7825 })
wander .folder = -15
wander .save()

response.write({ output: 'File moved.' })

}

*-15" is the ID for the “suitescripts/" folder in all accounts; once this executes, the File

7825 will be relocated to the “suiteScripts/" directory.

Note you can only set a numeric internal ID here; you cannot set the “folder™ with a path.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4229265810.html#bridgehead_4330094200
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4229265810.html#bridgehead_4330094200

Delete a File

To delete an existing file, we use the “delete() method" ~:

const readFile = (response) => {
f.delete({ id: 7825 })

response.write({ output: 'File deleted.' })

}

We delete a file using its numeric internal ID.

Note you can only specify a numeric internal ID here; you cannot delete a file using a

path. (Are you sensing a pattern here? | feel it's a little unfortunate that most of these File
APls do not support paths.)

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4226573892.html

Stream data into a File

With the basic mechanics of File operations covered, let's turn to a slightly different way of
generating File contents. Say we want to generate a CSV from some data we've retrieved

from elsewhere. It could be from a search or an external system or any other source.

/**
* Custom module for executing N/file cookbook examples
*
* @NApiVersion 2.1
* @NModuleScope SameAccount

*

* @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/)

“y
define(['N/file'], (f) => {

const WeatherData = [
date: '01/01/2020', high: 51, low: 19 },
date: '01/02/2020', high: 45, low: 27 },
date: '01/03/2020', high: 43, low: 20 },
date: '01/04/2020', high: 55, low: 22 1},
date: '01/05/2020', high: 41, low: 26 },
date: '01/06/2020', high: 43, low: 30 },
date: '01/07/2020', high: 57, low: 31 },
date: '01/08/2020', high: 55, low: 23 1},
date: '01/09/2020', high: 42, low: 26 },
date: '01/10/2020', high: 31, low: 13 }

A

P W ae W e W aon M e M W aca M

const readFile = (response) => {
const weatherFile = f.create({
name: 'weather.csv',
fileType: f.Type.CSV,
description: 'Stream data to a file, line by line',
folder: -15

1)

const lines = WeatherData.map((w) =>
[w.date, w.low, w.high].join("',")

lines.forEach((w) => {
weatherFile.appendLine({ value: w })

1)
weatherFile.save()

response.write({ output: weatherFile.getContents() })

return { readFile }

1)

Create the File

We create the “File" almost the same as we did before, except we do not specify any

“contents "

const weatherFile = f.create({
name: 'weather.csv',
fileType: f.Type.CSV,
description: 'Stream data to a file, line by line',
folder: -15

1)

Prepare contents

As stated previously, our data could be from any imaginable source; for this example I've
created it statically within our script.

const WeatherData = [

date: '01/01/2020', high: 51, low: 19 },
date: '01/02/2020', high: 45, low: 27 },
date: '01/03/2020', high: 43, low: 20 },
date: '01/04/2020', high: 55, low: 22 },
date: '01/05/2020', high: 41, low: 26 },
date: '01/06/2020', high: 43, low: 30 },
date: '01/07/2020', high: 57, low: 31 },
date: '01/08/2020', high: 55, low: 23 1},
date: '01/09/2020', high: 42, low: 26 },
date: '01/10/2020', high: 31, low: 13 }

-~

e N W W e e W e M

From there, we “map" over the Objects, turning each into a comma-separated string of

“date, low, high".

const lines = WeatherData.map((w) =>
[w.date, w.low, w.high].join("',")

This gives us all the lines of our CSV in an Array, each element of the Array represents one
line of the file.

Stream contents to file, line-by-line

“File® instances have an “appendLine” ~» for writing data into them one line at a

time.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4769938149.html

We already have our Array of “lines”, so we iterate over the Array with ~foreach", and

invoke “appendLine()" for each element in the Array.

lines.forEach((w) => {
weatherFile.appendLine({ value: w })

1)

“Note that ~appendLine() " can only be used on Text or CSV file types, and each line can
be no more than 10MB. It is also not limited to new files. We can use this method to
load an existing file and append data to the end of it without disturbing the original

contents.”

Read File line by line

Just as we can write to a file line by line, we can also read line by line:

const readFile = (response) => {
const weatherData = []
const weatherFile = f.load({ id: 'SuiteScripts/weather.csv' })

weatherFile.lines.iterator().each((1line) => {
const [date, low, high] = line.value.split(',"')

weatherData.push({ date, low, high })
return true

1)

response.write({ output: JSON.stringify(weatherData) })

Here we load the same CSV file as we created in the previous example:

const weatherFile = f.load({ id: 'SuiteScripts/weather.csv' })

“File" instances provide us with a “lines" 2~ which we can use to walk the lines of

a File one by one.

weatherFile.lines.iterator ()

The Iterator provides an “each()> method which will loop through the lines, passing each
line to the callback function we provide.

weatherFile.lines.iterator().each((line) => {
const [date, low, high] = line.value.split(',"')
weatherData.push({ date, low, high })
return true

1)

The ~line" passed in is an Object, and you can retrieve the contents of the line from its

“value® property. Here we do a “split()" ~ on all commas where we assume none of

our column values contain commas.

const [date, low, high] = line.value.split(',"')

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4769955095.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/split

We use ~» to assign each element from the Array to a variable. This

allows us to use the ~ for specifying Object properties next.

weatherData.push({ date, low, high })
return true

We then reconstruct the Objects we used initially when we defined “weatherbata™ and
“push()" ~ onto the “weatherbata™ Array.

Your callback function can return ~false" to stop or “true" to continue, similar to the way
the ~each()" iterator works on Search Results. Returning nothing is the same as returning
“false". If you find that your script is only processing the first line of the file, it's likely
because you forgot to return “true" here.

Note that the ~lines" Iterator can only be used on Text or CSV file types, and each line can
be no more than “1emB".

Why Stream?

It might not be immediately obvious why you would read a file this way. Why not get the
entire contents and get to work?

Files can be large; extremely large. Loading the entire contents of a huge file would
immediately consume the entire memory limit for your script. Further, you are presumably
going to do something interesting with each line of a CSV, and almost anything interesting
uses governance. Trying to process a massive file all at once is almost guaranteed to run
you into the governance limit for your script.

Instead, you can use this approach to process the file without pushing up against either of
these limits, allowing you to stop and check your governance threshold, store your
progress for next time, and react accordingly.

You can also use this as a preparatory step to processing large files, chunking them out
into smaller, more manageable file sizes.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#array_destructuring
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#property_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/push

Recommendations and Resources

NetSuite Help

NetSuite Help is the most definitive reference for SuiteScript and all of its capabilities. |
recommend studying the following articles and any related sub-articles:

2

[

|~

The Records Browser

The ~ is an absolutely crucial tool for creating effective searches. There is
a new version of the Records Browser for every version of NetSuite. The 2023.2 version
can be found 2.

If you are unfamiliar with the Records Browser, see 2 in the

Help documentation and

Mozilla Developer Network

SuiteScript is a library on top of JavaScript, and the best JavaScript reference manual is the

2.

While not related specifically to NetSuite, this site is an excellent source of JavaScript
reference material, examples, and tutorials.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4205693274.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_157072584764.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_0831085754.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2023_2/script/record/account.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2023_2/script/record/account.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_1527577879.html
https://stoic.software/effective-suitescript/records-browser/
https://developer.mozilla.org/

About the Author

My name is fn h. I run the Sustainable SuiteScript community for NetSuite

developers. | founded Stoic Software in 2016 to help others lead successful, sustainable
careers as NetSuite developers.

The "Sustainable SuiteScript" Community

We are a small community of NetSuite developers who want to deepen their technical
skills, expand their professional network, and raise the bar for SuiteScript development.
today.

Questions, Comments, Corrections

If you have any questions, comments, or corrections on this document, please email them
to me at

Get in Touch

The best way to keep in regular contact with me is to join the
mailing list. | read and respond to all emails | receive there.

| create SuiteScript videos on »

You can also connect with me on jn

https://www.linkedin.com/in/erictgrubaugh
https://www.linkedin.com/in/erictgrubaugh
https://stoic.software/community/
mailto:eric+cookbooks@stoic.software
https://stoic.software/
https://youtube.com/@StoicSoftware?sub_confirmation=1
https://youtube.com/@StoicSoftware?sub_confirmation=1
https://www.linkedin.com/in/erictgrubaugh
https://www.linkedin.com/in/erictgrubaugh

