Advanced Searching with SuiteScript 2.1

written by Eric T Grubaugh

part of the "SuiteScript by Example" » series

published by Stoic Software, LLC

https://stoic.software/
https://suitescriptbyexample.com/
https://stoic.software/

Advanced Searching with SuiteScript 2.1

by Eric T Grubaugh

Copyright (c) 2017- Stoic Software, LLC. All rights reserved.

Published by Stoic Software, LLC, PO Box 129, Wellington, CO 80549.

NetSuite and SuiteScript are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

Neither the author nor the publisher have any affiliation with Oracle Corporation or
NetSuite, Inc. This product is neither endorsed nor sponsored by Oracle Corporation or
NetSuite, Inc.

Using Code Samples

This book is here to help you learn. In general, you may use the code presented herein in
your own code. You do not need to contact me unless you are reproducing or redistributing

large portions of the code.

| appreciate, but do not require, attribution. An attribution usually includes the title,
author, and publisher:

"Advanced Searching with SuiteScript 2.1, by Eric T Grubaugh (Stoic Software, LLC).
Copyright 2017 Stoic Software, LLC."

https://stoic.software/
https://stoic.software/

Introduction

This SuiteScript cookbook is intended to provide you with practical examples for creating

complex searches with the SuiteScript API.
In Advanced Searching with SuiteScript 2.1, you'll see examples of:

How to process very large (4,000+) result sets using Paging

How many Results does this Search return? (Without having to run the Search twice)
Which Employees have logged overtime this week? (How to use Summary Filters)
How do | compare values between Search Columns?

Which Time Entries were entered late? (How to use Formula Filters and Columns)

Which Employees have zero time entries? (How to search for absence of something)

Conventions in this Book

All code examples in this book use the “require” function for defining modules. This allows
you to copy and paste the snippets directly into the debugger or your browser's developer

console and run them.
The “N/search™ module is always imported as "s".

“console.log" is used for writing output to the browser console. If desired, you can replace
these with calls to the “nNn/1og> module ~ for writing to the Execution Log for the debugger.

For more on how to test SuiteScript in your browser's console, watch my @ How-To video.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4574548135.html
https://www.youtube.com/watch?v=ZAN8clhKxIw&sub_confirmation=1
https://www.youtube.com/watch?v=ZAN8clhKxIw&sub_confirmation=1

What if | have more than 4000
results?

SuiteScript's various Search APIs ~ are limited in the number of Results they will retrieve:

The ~each" iterator will iterate through at most “4, 000" Results

“getRange” only allows retrieval of “1,000° Results at a time

What do you do when you need to process more than those limits?

Option 1: Repeated Calls to “getRange"

While ~getRange" is limited to “1,000° Results at a time, those “1,000° can be selected from
any slice of the Result set. We can use this to progressively grab slices of “1,000" Results
and concatenating them into a single Result set:

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4345764122.html

require(['N/search'], (s) => {
const customerSearch = s.create({
type: s.Type.CUSTOMER,
filters: [
['isinactive', s.Operator.IS, 'F']
1
columns: ['entityid', ‘'email']

}).run()

const getAllResults = (search) => {
let all = []
let results = []

const pageSize = 1000
let start = 0
let end = 1000

do {
results = search.getRange({ start, end })

all = [...all, ...results]
start += pageSize
end += pageSize

} while (results.length === pageSize)
return all
const customers = getAllResults(customerSearch)

console.log(customers.length)

1)

We start by creating our Search object and executing it with “run". In this example, we're

retrieving the email address (“email”) and name (“entityid") of all active Customers:

const customerSearch = s.create({
type: s.Type.CUSTOMER,
filters: [
['isinactive', s.Operator.IS, 'F']
1
columns: ['entityid',6 'email']

3).run()

Let's investigate the ~getAllResults" function closely. It accepts a generic
search.ResultSet » object (the output of “run()):

getAllResults = (search) => {

It instantiates two Arrays:

1. "all® accumulates all of the results with each loop.

2. “results’ holds only the results from a single search execution at a time.

all = []

results = []

Next, it defines some variables which control how we repeat our search executions without

retrieving the same results:

1. “pagesize" dictates how many results we'll try to retrieve with each execution. We set
this to the maximum possible size allowed by “getRange()" so that we execute the

fewest number of calls to the NetSuite database.
2. “start’ will track the beginning index (inclusive) of the current "page" of results.
3. “end” will track the final index (exclusive) of the current "page" of results.

pageSize = 1000
start = 0

end = 1000

We retrieve all Results ~» for the Search by invoking ~getRange*, combining the current page
of results to any previous results, then advancing the “start™ and “end" indices by one

page. We stop when the page we retrieve is not a full page:

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4345767679.html#bridgehead_4345767679
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4345767112.html

{

results = search.getRange({ start, end })

all = [...all, ...results]

start += pageSize
end += pageSize

(results.length === pageSize)

Once the loop finishes, the ~all" Array will contain all of our Search Results in a single
data set, and we can return it as the output of our function.

Once we have all Results in a single Array, we can process that Array however we choose

in order to accomplish our business task.

We execute our Search by passing it into a custom function, ~getAllResults’ and then

printing out the total number of results we've collected:

customers = getAllResults(customerSearch)

console.log(customers.length)

Option 2: Paging API

In option 1, we were essentially building our own paging system. Thankfully, NetSuite has
already done that for us, so there is no need to do it ourselves.

The “N/search™ module also provides us with a Paging API » for processing large “Result"
sets, giving us fine-grained control over what constitutes a "Page" of data, and how we
want to process it.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4486596158.html#Search.runPaged(options)

require(['N/search'], (s) => {

const customerSearch = s.create({
type: s.Type.CUSTOMER,
filters: [

['isinactive', s.Operator.IS, 'F']

1
columns: ['entityid', 'email']

}) .runPaged({ pageSize: 1000 })

const getAllResults = (search) => {
const all = []

search.pageRanges.forEach((pageRange) => {
let page = search.fetch({ index: pageRange.index })
all = [...all, ...page.data]

1)

return all

console.log(Expected result count: ${customerSearch.count})

const customers = getAllResults(customerSearch)
console.log(Actual result count: ${customers.length})

1)

We're using the same code structure as we used in Option 1; we're executing the search,

then collecting all the results with a custom ~getAllResults" function.

To use the Paging API, we use the Search's “runPaged- method instead of “run":

const customerSearch = s.create({
type: s.Type.CUSTOMER,
filters: [
['isinactive', s.Operator.IS, 'F']
1
columns: ['entityid', ‘'email']
}) .runPaged({ pageSize: 1000 })

Notice that we can control the number of Results per Page using the ~pagesize” option of

“runPaged".

minimum allowed “pageSize" is °5°

maximum allowed “pageSize® is "1,000°

default ~pagesize" is “50°

“runPaged” returns a search.PagedData ~ instance. From the “PagedData”, we iterate

through its PageRanges

search.pageRanges.forEach((pageRange) => {

1)

Each “PageRange™ contains a Page ~ (fetched by its index), and each “page" subsequently

contains the “search.Result™ data we can retrieve:

page = search.fetch({ : pageRange.index })

all = [...all, ...page.data]

This is slightly more concise than our previous “do...while" attempt.

At this point we have a single Array containing all of our Results, so we are free to process
that Array however we choose:

customers = getAllResults(customerSearch)

console.log(Actual result count: ${customers.length})

How many results are there?

Notice that a nice side effect of using “runPaged" is the “count™ property on the “PagedData”

instance it returns, which does not exist when we use “run:

console.log(Expected result count: ${customerSearch.count})

This is a much more performant way of getting the number of total Results from a Search,

without having to use any Summary “couNT™ Columns or execute the Search twice.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4486558900.html#search.PagedData
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4486559010.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4486547978.html#search.Page

Which Employees have logged
more than 40 hours this week?

There are many times we'll want to filter Search Results based on an aggregate value, like

a "SUM™, “COUNT, or “MAX". To accomplish this, we can leverage Summary Filters.

Let's look at an example where we find Employees who have entered more than 40 hours
of time this week.

require(['N/search'], (s) => {
const overtimeSearch = s.create({

type: s.Type.TIME_BILL,

filters: [
['type', s.Operator.ANYOF, 'A'], 'and',
['date', s.Operator.WITHIN, 'thisBusinessWeek'], 'and',
['SUM(durationdecimal)', s.Operator.GREATERTHAN, 40]

1,

columns: [
{
name: 'employee',
summary: s.Summary.GROUP
o {
name: 'durationdecimal',
summary: s.Summary.SUM
3
]
})

const printEmployee = (result) => {
const employeeName = result.getText({
name: 'employee',
summary: s.Summary.GROUP

1)

const employeeHours = result.getValue({
name: 'durationdecimal',
summary: s.Summary.SUM

1)

console.log(employeeName + ': ' + employeeHours)

return true

console.log(overtimeSearch.runPaged().count)
overtimeSearch.run().each(printEmployee)

1)

We create our Time Bill search to find all Time Entries where the Type is Actual Time, the

Date is within the current business week, and the Sum of the Duration is greater than

*40°. In our Results, we want the Sum of the Duration grouped by Employee.

const overtimeSearch = s.create({
type: s.Type.TIME_BILL,
filters: [
['type', s.Operator.ANYOF, 'A'], 'and',
['date', s.Operator.WITHIN, 'thisBusinessWeek'], 'and',
['SUM(durationdecimal)', s.Operator.GREATERTHAN, 40]

1

columns: [

{

name: 'employee',
summary: s.Summary.GROUP

o

name: 'durationdecimal',
summary: s.Summary.SUM

3
1)

Focus primarily on the “durationdecimal® Search Filter:

['SUM(durationdecimal)', s.Operator.GREATERTHAN, 40]

To summarize a Filter in a Filter Expression », we wrap the name of our Filter field in the

Summary function we want:

*sumM() " for a summation
“MAX() " for a maximum
"MIN()® for a minimum
“COUNT ()" for a count

“AVG() " for an average

If we are using “Filter® Objects instead, we could express this same Filter as:

name: 'durationdecimal',
summary

S.Summary.SUM,
operator

s.Operator.GREATERTHAN,
values

40

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_458440490721.html

After that, we can execute and process our Search like any other.

In this example, we use “runPaged() " to first record the number of search results, then we

process the results by invoking a custom “printEmployee function on each one:

console.log(overtimeSearch.runPaged().count)

overtimeSearch.run().each(printEmployee)

Note that calling “runPaged()" does consume an additional “5° units of governance, so
don't automatically do this on any search that you execute unless you are already calling
“runPaged()” anyway.

Which Time Entries were created
more than 7 days after the work
was completed?

In order to perform calculations or comparisons on fields in our Search Results, we need to
leverage NetSuite's Formula capabilities. When searching, we can leverage formulae in
both Filters and Columns.

Let's look at an example to find all Time Entries where the entry was created more than 7
days after the work was actually completed.

require(['N/search'], (s) => {

daysElapsedFormula = 'CEIL({date}-{datecreated})'
lateEntriesSearch = s.create({
: S.Type.TIME BILL,
|
[formulanumeric: ${daysElapsedFormula} , s.Operator.GREATERTHAN, 7]
1
[
'employee',
'date’',
'datecreated’',
{
'formulanumeric',
: daysElapsedFormula

resultToObject = (result) => ({
result.getText({ : 'employee' 1),
result.getValue({ : 'formulanumeric' })

1)

console.log(# Late Entries = ${lateEntriesSearch.runPaged().count})
results = lateEntriesSearch.run().getRange({ : 0, : 1000 })
lateEntries = results.map(resultToObject)
console.table(lateEntries)

1)

We start by defining the formula itself:

daysElapsedFormula = 'CEIL({date}-{datecreated})"

While it's not necessary to put this into its own variable like this, I've done so to avoid
repeating the same formula in both the Filter and the Column. This way when | need to
change it, | can do so in one spot, and the change will be reflected everywhere it's

necessary.

With the formula defined, we create our Search, specifying a Formula Filter and a Formula

Column for showing the number of days elapsed from Date Created to Date:

lateEntriesSearch = s.create({
: s.Type.TIME_BILL,
|
[formulanumeric: ${daysElapsedFormula} , s.Operator.GREATERTHAN, 7]
1
[
'employee’,
'date’,
'datecreated’,
{
'formulanumeric',
: daysElapsedFormula

Note that when you subtract two Date fields in a Formula, NetSuite will give you the

number of Days between those two Dates.

Because the subtraction of two Dates results in a Number, we use "~ formulanumeric™ rather
than ~formuladate®. The formula type you must choose depends on the output of your
formula, not on the inputs.

Once again, we execute our Search and retrieve results like any other Search:

console.log(# Late Entries = ${lateEntriesSearch.runPaged().count})

results = lateEntriesSearch.run().getRange({ i 0, : 1000 1)

In this case | want to “map” over all my Search Results and turn each one into a flat Object

so that they are nicely printable by ~console.table".

The “resultToobject™ function turns a single “Result" into a plain object:

resultToObject = (result) => ({
: result.getText({ : 'employee' }),

: result.getValue({ : 'formulanumeric' })

Then we pass “resultToObject™ as the iterator function for “map" so it will translate all the
elements of the “results” Array:

lateEntries = results.map(resultToObject)
console.table(lateEntries)

Notice how we read the value of the Formula Column by specifying "~ formulanumeric™ as

the “name":

: result.getValue({ : 'formulanumeric' })

What happens if | have multiple Formula Columns?

Since we retrieve the value of a Formula Column by specifying ~formulanumeric:, we also

need a way to distinguish between multiple Formula Columns of the same type.

Let's add a non-rounded version of the same Formula to our Search Columns:

require(['N/search'], (s) => {

const daysElapsedFormula = 'CEIL({date}-{datecreated})’
const lateEntriesSearch = s.create({
type: s.Type.TIME_BILL,
filters: [
['formulanumeric: ' + daysElapsedFormula, s.Operator.GREATERTHAN, 7]

1

columns: [

'employee’,

'date’',

'datecreated’,

{
name: 'formulanumeric',
formula: dayskElapsedFormula

3

{

name: 'formulanumeric',
formula: '{date}-{datecreated}'
b
]
1)

const resultToObject = (result) => {
const res = result.toJSON()
console.log(res)
return {
employeeName: result.getText({ name: 'employee' }),
daysElapsed: res.values.formulanumeric,
daysElapsedNoRound: res.values.formulanumeric_1
X
3

console.log(# Late Entries = ${lateEntriesSearch.runPaged().count})
const results = lateEntriesSearch.run().getRange({ start: 0, end: 1000 })
const lateEntries = results.map(resultToObject)
console.table(lateEntries)

1)
First we've added our new non-rounded Formula Column:
columns: [
name: "formulanumeric",

formula: "{date}-{datecreated}"

However, since both columns are technically named " formulanumeric', “getValue' is unable

to distinguish between them and would retrieve the last one defined.

In order to use multiple Formula Columns of the same type, we have to get a little creative
here and turn the Search Result into a plain JavaScript Object using the Result's “toJson()"
method:

res = result.toJSON()

console.log(res)

We log out the object to inspect its structure, and | highly recommend you study it closely

for yourself.

From here, each subsequent ~formulanumeric™ gets a number appended to it, like
formulanumeric_1"; we use this knowledge to distinguish between our Formulae of the

same type:

: result.getText({ : 'employee' }),
: res.values.formulanumeric,
: res.values.formulanumeric_1

Column Comparisons

When we're building Searches, it's common that we'll need to return the data for

individual Columns, and also need to compare values between those Columns.

Formula Columns are the best way to accomplish these comparisons, like we've done in

this example, comparing the Date to the Date Created on the Time Entry:

[
"employee",
”date”,
"datecreated",

{

: "formulanumeric",
: "{date}-{datecreated}"

In this instance, we happen to be subtracting the two, but you could use any operator or

available SQL formula » you choose to compare the values.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_N2833020.html#Expressions

Which Employees have no Time
Entries in the past week?

The majority of the time that we're building searches, we're searching for the existence of
Records that meet our criteria. Once in a while, however, we actually need to search for
the absence of something, and this can often be trickier.

For example, which Employees have no Time Entries for this week?

Because we are looking for the absence of a Record, we'll actually need to combine the
Results from two different searches. If the Records don't exist, we can't find them directly,
so we take a slightly different approach:

require(['N/search'], (s) => {
const employeeSearch = s.create({
type: s.Type.EMPLOYEE,
filters: [
['isinactive', s.Operator.IS, 'F']
1
columns: [
{ name: 'formulatext', formula: "{firstname} || ' ' || {lastname}" }
]
1)

const timeSearch = s.create({
type: s.Type.TIME_BILL,
filters: [
['date', s.Operator.WITHIN, 'thisBusinessWeek'], 'and',
['type', s.Operator.ANYOF, 'A']
1,
columns: [
{ name: 'employee', summary: s.Summary.GROUP }
]
1)

console.log(# Employees = ${employeeSearch.runPaged().count})
console.log(# Employees with Entries = ${timeSearch.runPaged().count})

const employees = employeeSearch.run().getRange({ start: 0, end: 1000 })
const timeEntries = timeSearch.run().getRange({ start: 0, end: 1000 })

const employeeHasEntry = (entries, employee) =>
entries.some((entry) => {
let entryEmployee = entry.getValue({
name: 'employee',
summary: s.Summary.GROUP
1)
return (entryEmployee == employee.id)

1)

const findEmployeesWithNoEntries = (employees, entries) =>
employees.filter((employee) => !employeeHasEntry(entries, employee))

const printEmployeeName = (result) =>
console.log(result.getValue({ name: 'formulatext' }))

const employeesWithNoEntries = findEmployeesWithNoEntries(
employees,
timeEntries

console.log(# Employees With No Entries = ${employeesWithNoEntries.length})
employeesWithNoEntries.forEach(printEmployeeName)

1)

We first get the list of all active Employees and the list of all Employees who have created
Time Entries for this week:

const employeeSearch = s.create({
type: s.Type.EMPLOYEE,
filters: [
['isinactive', s.Operator.IS, 'F']
1
columns: [
{ name: 'formulatext',6 formula: "{firstname} || ' ' || {lastname}" }
1
1)

const timeSearch = s.create({
type: s.Type.TIME_BILL,
filters: [
['date', s.Operator.WITHIN, 'thisBusinessWeek'], 'and',
['type', s.Operator.ANYOF, 'A']
1

columns: [
{ name: 'employee', summary: s.Summary.GROUP }

]
1)

console.log(# Employees = ${employeeSearch.runPaged().count})
console.log(# Employees with Entries = ${timeSearch.runPaged().count})

const employees = employeeSearch.run().getRange({ start: 0, end: 1000 })

const timeEntries = timeSearch.run().getRange({ start: 0, end: 1000 })

So far there's nothing new here; we're running two separate Searches.

Now in order to determine which Employees don't have any Time Entries, we can
"subtract" the Employees who do have Time Entries from the list of a// Employees. This

will leave us only with Employees who do not have Time Entries.

To accomplish this, we can leverage the JavaScript Array's “filter" » and “some"
methods.

First, we write the ~employeeHasEntry" function that accepts an Array of Time Entry Search

Results and a single Employee Search Result. Its job is to determine whether a specific

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/some

Employee has a Time Entry:

const employeeHasEntry = (entries, employee) =>
entries.some((entry) => {
let entryEmployee = entry.getValue({
name: 'employee',

summary: s.Summary.GROUP

1)

return (entryEmployee == employee.id)

1)

We use “some" to determine if the given ~employee exists within the ~entries: Array.

Now that we can detect whether a single Employee has any Time Entries, we need to

extend that over the full list of Employees. This falls to “findEmployeesWithNoEntries:

const findEmployeesWithNoEntries = (employees, entries) =>
employees.filter((employee) => !employeeHasEntry(entries, employee))

We use “employeeHasEntry" as the predicate » of a “~filter" to remove the Employees that

do have a Time Entry from ~employees".

We can now pass in our two separate Result Arrays and list the Employees that have no

Time Entries this week:

const employeesWithNoEntries = findEmployeesWithNoEntries(
employees,
timeEntries

)

console.log(# Employees With No Entries = ${employeesWithNoEntries.length})
employeesWithNoEntries.forEach(printEmployeeName)

This will print out the number of Employees with no Time Entries, followed by the list of

their names.

https://zetcode.com/javascript/predicate/

What's the Internal ID for this
Search Result?

Every Search Result in SuiteScript is fundamentally a reference to a Record in NetSuite.
It's common to run a Search and then want to use the Internal ID for the Record that the

Result represents.

In fact, it's so common that every Search Result in SuiteScript has an “id" property that
contains the corresponding Record's internal ID; there is rarely a need to explicitly add

“internalid” as a Search Column in your Search.

require(['N/search'], (s) {
plainSearch = s.create({
. s.Type.EMPLOYEE,
|

['isinactive', s.Operator.IS, 'F']

[

'formulatext', : "{firstname} || ' ' || {lastname}" }

printEmployeeId = (result) => {
console.log(result.id)
false

}

console.log('IDs for Plain Search:')
plainSearch.run().each(printEmployeeId)

1)

This will print the internal ID of every active Employee by accessing “result.id™; no

“internalid” Column needed.

Except...

As with all things NetSuite, however, there is an exception to this: Summary Columns.

Summarized Search Results no longer reference a single Record, but rather an aggregate
of Records; for summarized Search Results, the “id" property will be “undefined*, and thus
not very helpful. However, it's common to summarize your Search Results, and also need

to drill down into the data for the individual Records that make up the summary.

Let's modify our example to group the Employees by their Hire Date:

s.create({
type: s.Type.EMPLOYEE,
filters: [

['isinactive', s.Operator.IS, 'F']
1

columns: [
{ name: 'hiredate', summary: s.Summary.GROUP },

{
name: 'formulatext',
formula: "{firstname} || ' ' || {lastname}",
summary: s.Summary.GROUP
}
]
1)

How do we access the Internal ID for Search Results within a Summary?

We first add an “internalid® Search Column:

columns: [
{ name: 'hiredate', summary: s.Summary.GROUP },

{

name: 'formulatext',

formula: "{firstname} || ' ' || {lastname}",
summary: s.Summary.GROUP

iy

{ name: 'internalid', summary: s.Summary.GROUP }

Then we need to access it using “getvalue" instead of ~id":

const printEmployeeId = (result) => {

console.log(result.getValue({ name: 'internalid', summary: s.Summary.GROUP 1}))
return false

Frequently Asked Questions

How do | find the details on NetSuite's SQL formulas?

The Help page titled SQL Expressions » contains all the reference material for the

supported SQL functions you can utilize.

How do | find the name/ID for a specific Filter?

Find your Record Type in the Records Browser », and explore the "Search Filters" section.

The value in the Internal ID column is what you'll use as your Filter name.

How do | find the name/ID for a specific Column?

Find your Record Type in the Records Browser ~, and explore the "Search Columns"

section. The value in the Internal ID column is what you'll use as your Column name.

How do | find the name/ID for a specific Join?

Find your Record Type in the Records Browser ~, and explore the "Search Joins" section.

The value in the Join ID column is what you'll use as your Join hame.

There's a Records Browser, a Schema Browser, and a
Connect Browser. What's the difference?

Records Browser - Used for accessing Record data via SuiteScript
Schema Browser - Used for accessing Record data via SuiteTalk

Connect Browser - Used for accessing Record data via ODBC

When you're writing SuiteScript, you can safely focus only on the Records Browser.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_N2833020.html#Expressions
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2023_2/script/record/account.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2023_2/script/record/account.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2023_2/script/record/account.html

Recommendations and Resources

NetSuite Help

NetSuite Help is the most definitive reference for the “N/search™ module and all of its
capabilities. | recommend studying the following articles and any related sub-articles:

N/search Module »~

N/search Module Script Samples »~

search.Type »

search.Summary »

SuiteScript 2.x Search Operators »

search.Filter »

search.filterExpression »~

search.Column »

search.Operator ~

Summary Type Descriptions »

Search Date Filters ~

Search.filters »~

search.filterExpression »~

search.Column ~

SQL Expressions »

Use the Search Ul

A great way to both learn about and verify your SuiteScript searches is to actually build
the search in the Ul first, then translate it into SuiteScript.

By doing this, you can quickly verify that the Filters and Columns you're specifying
actually give you the correct results before you even start writing code.

NetSuite Search Export Chrome Plugin

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4345764122.html#subsect_87180423808
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_0304061100.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4483165708.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4345777923.html#search.Summary
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/article_4094344956.html#SuiteScript-2.x-Search-Operators
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4345767603.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_458440490721.html#Search.filterExpression
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4345767216.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4345782273.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_N659383.html#Summary-Type-Descriptions
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_N645835.html#bridgehead_N645984
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_459415222167.html#bridgehead_4587445379
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_458440490721.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4345767216.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_N2833020.html#Expressions

There is a helpful Chrome Plugin called "NetSuite Search Export" built by g David Smith.

The Plugin will automatically generate SuiteScript for any Saved Search in your account.
You can find it on the Chrome Plugin Store »

To use this plugin:

1. Create a Saved Search in the Ul
2. Save the search

3. Click the "Export to Script" link near the top right

Searching with SuiteScript Playlist

| have a @ playlist on YouTube containing several videos and examples of searching in

SuiteScript.

The Records Browser

The Records Browser ~ is an absolutely crucial tool for creating effective searches. There is
a new version of the Records Browser for every version of NetSuite. The 2023.2 version
can be found in NetSuite Help ~.

If you are unfamiliar with the Records Browser, see SuiteScript Records Browser ~ in the

Help documentation and my tutorial.

Mozilla Developer Network

SuiteScript is a library on top of JavaScript, and the best JavaScript reference manual is the
Mozilla Developer Network ~.

While not related specifically to NetSuite, this site is an excellent source of JavaScript

reference material, examples, and tutorials.

https://www.linkedin.com/in/davidcrsmith/
https://www.linkedin.com/in/davidcrsmith/
https://chrome.google.com/webstore/detail/netsuite-search-export/gglbgdfbkaelbjpjkiepdmfaihdokglp
https://www.youtube.com/playlist?list=PLG2tK6Va2WUBP_JCf4nVAbFc6vGuB_lBm&sub_confirmation=1
https://www.youtube.com/playlist?list=PLG2tK6Va2WUBP_JCf4nVAbFc6vGuB_lBm&sub_confirmation=1
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2023_2/script/record/account.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2023_2/script/record/account.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_1527577879.html
https://stoic.software/effective-suitescript/records-browser/
https://developer.mozilla.org/

About the Author

My name is B Eric T Grubaugh. | run the Sustainable SuiteScript community for NetSuite

developers. | founded Stoic Software in 2016 to help others lead successful, sustainable
careers as NetSuite developers.

The "Sustainable SuiteScript" Community

We are a small community of NetSuite developers who want to deepen their technical
skills, expand their professional network, and raise the bar for SuiteScript development.

Join us today.

Questions, Comments, Corrections

If you have any questions, comments, or corrections on this document, please email them

to me at eric+cookbooks@stoic.software.

Get in Touch

The best way to keep in regular contact with me is to join the Sustainable SuiteScript

mailing list. | read and respond to all emails | receive there.

| create SuiteScript videos on @ YouTube.

You can also connect with me on fgLinkedIn.

https://www.linkedin.com/in/erictgrubaugh
https://www.linkedin.com/in/erictgrubaugh
https://stoic.software/community/
mailto:eric+cookbooks@stoic.software
https://stoic.software/
https://youtube.com/@StoicSoftware?sub_confirmation=1
https://youtube.com/@StoicSoftware?sub_confirmation=1
https://www.linkedin.com/in/erictgrubaugh
https://www.linkedin.com/in/erictgrubaugh

