
Managing Files with SuiteScript 2.1

written by Eric T Grubaugh

part of the "SuiteScript by Example"↗ series

published by Stoic Software, LLC

https://stoic.software/
https://suitescriptbyexample.com/
https://stoic.software/

Managing Files with SuiteScript 2.1

by Eric T Grubaugh

Copyright (c) 2017- Stoic Software, LLC. All rights reserved.

Published by Stoic Software, LLC, PO Box 129, Wellington, CO 80549.

NetSuite and SuiteScript are registered trademarks of Oracle and/or its affiliates. Other

names may be trademarks of their respective owners.

Neither the author nor the publisher have any affiliation with Oracle Corporation or

NetSuite, Inc. This product is neither endorsed nor sponsored by Oracle Corporation or

NetSuite, Inc.

Using Code Samples

This book is here to help you learn. In general, you may use the code presented herein in

your own code. You do not need to contact me unless you are reproducing or redistributing

large portions of the code.

I appreciate, but do not require, attribution. An attribution usually includes the title,

author, and publisher:

"Managing Files with SuiteScript 2.1, by Eric T Grubaugh (Stoic Software, LLC).

Copyright 2017 Stoic Software, LLC."

https://stoic.software/
https://stoic.software/

Introduction

Managing Files with SuiteScript 2.1 is intended to provide you with practical examples for

interacting with the File Cabinet in your SuiteScript.

In this SuiteScript Cookbook, you'll see examples of:

Loading an existing file

Creating a new file

Relocating a file

Deleting a file

Stream data into a file

Read contents of a file line by line

Patterns in this Book

All code examples are written in SuiteScript 2.1.

The `N/file` module is always imported as `f`.

/**/**

 * Custom module for executing N/file cookbook examples * Custom module for executing N/file cookbook examples

 * *

 * @NApiVersion 2.1 * @NApiVersion 2.1

 * @NModuleScope SameAccount * @NModuleScope SameAccount

 * *

 * @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/) * @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/)

 */ */

definedefine(([['N/file''N/file']],, ((ff)) =>=> {{

 // This is where our example code will go// This is where our example code will go

}}))

Initial Setup

The `N/file` module allows us to interact with the contents of NetSuite's File Cabinet.

Before we can get to working with those files, there's a little setup work to do first.

`N/file` can only be used in server-side scripts, meaning we can't drop code in the

browser console and expect it to work.

Instead, we're going to build a Suitelet that will interact with our files for us.

We'll start by building a custom module file. This is where we'll be adding and changing

the code from the upcoming examples:

We'll walk through this code in detail shortly.

1. Create a folder in the File Cabinet at `/SuiteScripts/file-cookbook/`

2. Upload the above source code into the new folder in a file named `file-cookbook.js`.

3. From now on, I will refer to this file as the "`file-cookbook` module".

/**/**

 * Suitelet for testing File interactions * Suitelet for testing File interactions

 * *

 * @NApiVersion 2.1 * @NApiVersion 2.1

 * @NModuleScope SameAccount * @NModuleScope SameAccount

 * @NScriptType Suitelet * @NScriptType Suitelet

 * *

 * @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/) * @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/)

 */ */

definedefine(([['./file-cookbook''./file-cookbook',, 'N/https''N/https']],, functionfunction ((fileCookbookfileCookbook,, https https)) {{

 /** @see https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_44079/** @see https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_44079

 constconst onRequestonRequest == ((contextcontext)) =>=> {{

 log log..auditaudit(({{ titletitle:: context context..requestrequest..method method ++ ' request received'' request received' }}))

 // Ignore POST requests// Ignore POST requests

 ifif ((contextcontext..requestrequest..method method !==!== https https..MethodMethod..GETGET)) {{

 returnreturn

 }}

 fileCookbook fileCookbook..readFilereadFile((contextcontext..responseresponse))

 log log..auditaudit(({{ titletitle:: 'Request complete.''Request complete.' }}))

 }}

 returnreturn {{ onRequest onRequest }}

}}))

1. Use the above source code to create a second file in the same folder as before.

2. Use this second file to create a new `Suitelet`↗ named File Interaction.

3. Create a Deployment↗ for the Suitelet; leave it in `Testing` status.

4. On the Deployment, add a new `Link`↗ in the `Links` sublist. Locate it somewhere

accessible to the Role you'll be using to test the examples in this book. For me, using

the Administrator Role, I chose `Classic Center > Setup > Custom > File Interaction`.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4489062315.html#procedure_4489062240
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_0706024425.html#procedure_1557886205
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_1524082595.html#bridgehead_1524083321

“⚠️ If either of these code files is named differently or is not in the same folder, you will

likely receive `MODULE_NOT_FOUND` errors when attempting to access the Suitelet.”

This Suitelet is our test runner for working with files. Whenever we need to test one of our

code examples, we access the link for the Suitelet in NetSuite's main navigation, and we

can monitor the resulting Execution Logs↗ on the Suitelet record.

For the remainder of the cookbook, you should not need to make any modifications to the

Suitelet or its source code.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4375896105.html#Using-the-Script-Execution-Log-Tab

/**/**

 * Custom module for executing N/file cookbook examples * Custom module for executing N/file cookbook examples

 * *

 * @NApiVersion 2.1 * @NApiVersion 2.1

 * @NModuleScope SameAccount * @NModuleScope SameAccount

 * *

 * @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/) * @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/)

 */ */

definedefine(([['N/file''N/file']],, ((ff)) =>=> {{

 constconst readFilereadFile == ((responseresponse)) =>=> {{

 constconst text text == [[

 f f..loadload(({{ idid:: 78257825 }}))..getContentsgetContents(()),,

 f f..loadload(({{ idid:: 'Cookbook Files/lost.txt''Cookbook Files/lost.txt' }}))..getContentsgetContents(()),,

 f f..loadload(({{ idid:: './help.txt''./help.txt' }}))..getContentsgetContents(())

]]..joinjoin(('\r\n''\r\n'))

 response response..writewrite(({{ outputoutput:: text text }}))

 }}

 returnreturn {{ readFile readFile }}

}}))

Load contents of an existing File

We'll start by reading the contents of existing files. Add a new function named `readFile`

to the `file-cookbook` module:

The `N/file` module provides a `load()` method for retrieving existing `File` instances.

I've made three different sample files in my File Cabinet to showcase that we can load a

file using three different means:

1. by its internal ID: `f.load({id: 7825})`

2. by its absolute path, relative to the File Cabinet root: `f.load({id: 'Cookbook

Files/lost.txt'})`

3. by its path relative to the currently executing script: `f.load({id: './help.txt'})`

“You will need to adjust the IDs and paths for files that exist in your File Cabinet.”

`File` instances have a `getContents()` method↗ which will return the contents of the

`File` as a `string`.

Here we load three `File` instances and place their contents in an Array, then we `join()`

the Array↗ into a single `string`.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4229269811.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/join
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/join

constconst readFilereadFile == ((responseresponse)) =>=> {{

 constconst file file == f f..loadload(({{ idid:: './help.txt''./help.txt' }}))

 constconst output output == `̀
 <p>File Size (bytes): <p>File Size (bytes): ${${filefile..sizesize}}</p></p>

 <p>File Path: <p>File Path: ${${filefile..pathpath}}</p></p>

 <p>File URL: <p>File URL: ${${filefile..urlurl}}</p></p>

 <p>Is Text Type? <p>Is Text Type? ${${filefile..isTextisText}}</p></p>

 `̀

 response response..writewrite(({{ output output }}))

}}

Once you've updated this code with files that exist in your File Cabinet, navigate to the

Suitelet via the Link you created on the Deployment. You should see the contents of all

three files concatenated and displayed in your browser.

Other File Properties

Once a `File` has been loaded, there are a few other pieces of information we can

retrieve in addition to the contents.

Adjust the `readFile` function like so:

Once the `file-cookbook` module is updated, refresh the Suitelet page, and you should

see something like:

See the `File` object members documentation↗ for details on the properties and methods

of the `File` instance.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4205693274.html#bridgehead_4223145668

constconst readFilereadFile == ((responseresponse)) =>=> {{

 f f..createcreate(({{

 fileTypefileType:: f f..TypeType..PLAINTEXTPLAINTEXT,,

 namename:: 'alliteration.txt''alliteration.txt',,

 folderfolder:: --1515,,

 contentscontents:: 'How much wood would a woodchuck chuck''How much wood would a woodchuck chuck'

 }}))..savesave(())

 response response..writewrite(({{ outputoutput:: 'File created.''File created.' }}))

}}

ff..createcreate(({{

 fileTypefileType:: f f..TypeType..PLAINTEXTPLAINTEXT,,

 namename:: 'alliteration.txt''alliteration.txt',,

 folderfolder:: --1515,,

 contentscontents:: 'How much wood would a woodchuck chuck''How much wood would a woodchuck chuck'

}}))

ff..createcreate(({{

 // ...// ...

}}))..savesave(())

Create a new File

We're not limited to working with existing files; we can also create them via script:

The method for creating files is `file.create()`. The only required parameters are

`fileType` and `name`. Note that the `name` should include the file extension explicitly.

In addition, we can directly provide the `folder` where the file should be saved. You must

provide the numeric ID of the folder; it cannot be a path.

Once we've created the `File` instance with `create()`, we then invoke its `save()`

method↗ to store it in the File Cabinet.

Other Options

There are a few additional parameters we can specify at creation time:

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4229271179.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4229271179.html

constconst readFilereadFile == ((responseresponse)) =>=> {{

 f f..createcreate(({{

 fileTypefileType:: f f..TypeType..PLAINTEXTPLAINTEXT,,

 namename:: 'alliteration-again.txt''alliteration-again.txt',,

 folderfolder:: --1515,,

 contentscontents:: 'How much wood would a woodchuck chuck''How much wood would a woodchuck chuck',,

 descriptiondescription:: 'If a woodchuck could chuck wood?''If a woodchuck could chuck wood?',,

 encodingencoding:: f f..EncodingEncoding..ISO_8859_1ISO_8859_1,,

 isInactiveisInactive:: falsefalse,,

 isOnlineisOnline:: truetrue

 }}))..savesave(())

 response response..writewrite(({{ outputoutput:: 'File created again.''File created again.' }}))

}}

`description` sets the Description field on the File record when viewing it in the UI

`encoding` sets the Character Encoding of the File using the `file.Encoding`

enumeration↗

`isInactive` enables (`true`) or disables (`false`) the File's `inactive` flag

`isOnline` enables (`true`) or disables (`false`) the `Available without Login` setting

on the File

See the `file.create()` documentation↗ for details.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4228998505.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4228998505.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4223861820.html

constconst readFilereadFile == ((responseresponse)) =>=> {{

 constconst wander wander == f f..loadload(({{ idid:: 78257825 }}))

 wander wander..folder folder == --1515

 wander wander..savesave(())

 response response..writewrite(({{ outputoutput:: 'File moved.''File moved.' }}))

}}

Move a File

To relocate an existing file to another folder; we set the `File` instance's `folder`

property↗:

`-15` is the ID for the `SuiteScripts/` folder in all accounts; once this executes, the File

`7825` will be relocated to the `SuiteScripts/` directory.

Note you can only set a numeric internal ID here; you cannot set the `folder` with a path.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4229265810.html#bridgehead_4330094200
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4229265810.html#bridgehead_4330094200

constconst readFilereadFile == ((responseresponse)) =>=> {{

 f f..deletedelete(({{ idid:: 78257825 }}))

 response response..writewrite(({{ outputoutput:: 'File deleted.''File deleted.' }}))

}}

Delete a File

To delete an existing file, we use the `delete() method`↗:

We delete a file using its numeric internal ID.

Note you can only specify a numeric internal ID here; you cannot delete a file using a

path. (Are you sensing a pattern here? I feel it's a little unfortunate that most of these File

APIs do not support paths.)

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4226573892.html

/**/**

 * Custom module for executing N/file cookbook examples * Custom module for executing N/file cookbook examples

 * *

 * @NApiVersion 2.1 * @NApiVersion 2.1

 * @NModuleScope SameAccount * @NModuleScope SameAccount

 * *

 * @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/) * @author Eric T Grubaugh <eric@stoic.software> (https://stoic.software/)

 */ */

definedefine(([['N/file''N/file']],, ((ff)) =>=> {{

 constconst WeatherData WeatherData == [[

 {{ datedate:: '01/01/2020''01/01/2020',, highhigh:: 5151,, lowlow:: 1919 }},,

 {{ datedate:: '01/02/2020''01/02/2020',, highhigh:: 4545,, lowlow:: 2727 }},,

 {{ datedate:: '01/03/2020''01/03/2020',, highhigh:: 4343,, lowlow:: 2020 }},,

 {{ datedate:: '01/04/2020''01/04/2020',, highhigh:: 5555,, lowlow:: 2222 }},,

 {{ datedate:: '01/05/2020''01/05/2020',, highhigh:: 4141,, lowlow:: 2626 }},,

 {{ datedate:: '01/06/2020''01/06/2020',, highhigh:: 4343,, lowlow:: 3030 }},,

 {{ datedate:: '01/07/2020''01/07/2020',, highhigh:: 5757,, lowlow:: 3131 }},,

 {{ datedate:: '01/08/2020''01/08/2020',, highhigh:: 5555,, lowlow:: 2323 }},,

 {{ datedate:: '01/09/2020''01/09/2020',, highhigh:: 4242,, lowlow:: 2626 }},,

 {{ datedate:: '01/10/2020''01/10/2020',, highhigh:: 3131,, lowlow:: 1313 }}

]]

 constconst readFilereadFile == ((responseresponse)) =>=> {{

 constconst weatherFile weatherFile == f f..createcreate(({{

 namename:: 'weather.csv''weather.csv',,

 fileTypefileType:: f f..TypeType..CSVCSV,,

 descriptiondescription:: 'Stream data to a file, line by line''Stream data to a file, line by line',,

 folderfolder:: --1515

 }}))

 constconst lines lines == WeatherData WeatherData..mapmap((((ww)) =>=>

 [[ww..datedate,, w w..lowlow,, w w..highhigh]]..joinjoin((','','))

))

 lines lines..forEachforEach((((ww)) =>=> {{

 weatherFile weatherFile..appendLineappendLine(({{ valuevalue:: w w }}))

 }}))

 weatherFile weatherFile..savesave(())

 response response..writewrite(({{ outputoutput:: weatherFile weatherFile..getContentsgetContents(()) }}))

 }}

 returnreturn {{ readFile readFile }}

}}))

Stream data into a File

With the basic mechanics of File operations covered, let's turn to a slightly different way of

generating File contents. Say we want to generate a CSV from some data we've retrieved

from elsewhere. It could be from a search or an external system or any other source.

constconst weatherFile weatherFile == f f..createcreate(({{

 namename:: 'weather.csv''weather.csv',,

 fileTypefileType:: f f..TypeType..CSVCSV,,

 descriptiondescription:: 'Stream data to a file, line by line''Stream data to a file, line by line',,

 folderfolder:: --1515

}}))

constconst WeatherData WeatherData == [[

 {{ datedate:: '01/01/2020''01/01/2020',, highhigh:: 5151,, lowlow:: 1919 }},,

 {{ datedate:: '01/02/2020''01/02/2020',, highhigh:: 4545,, lowlow:: 2727 }},,

 {{ datedate:: '01/03/2020''01/03/2020',, highhigh:: 4343,, lowlow:: 2020 }},,

 {{ datedate:: '01/04/2020''01/04/2020',, highhigh:: 5555,, lowlow:: 2222 }},,

 {{ datedate:: '01/05/2020''01/05/2020',, highhigh:: 4141,, lowlow:: 2626 }},,

 {{ datedate:: '01/06/2020''01/06/2020',, highhigh:: 4343,, lowlow:: 3030 }},,

 {{ datedate:: '01/07/2020''01/07/2020',, highhigh:: 5757,, lowlow:: 3131 }},,

 {{ datedate:: '01/08/2020''01/08/2020',, highhigh:: 5555,, lowlow:: 2323 }},,

 {{ datedate:: '01/09/2020''01/09/2020',, highhigh:: 4242,, lowlow:: 2626 }},,

 {{ datedate:: '01/10/2020''01/10/2020',, highhigh:: 3131,, lowlow:: 1313 }}

]]

constconst lines lines == WeatherData WeatherData..mapmap((((ww)) =>=>

 [[ww..datedate,, w w..lowlow,, w w..highhigh]]..joinjoin((','','))

))

Create the File

We create the `File` almost the same as we did before, except we do not specify any

`contents`:

Prepare contents

As stated previously, our data could be from any imaginable source; for this example I've

created it statically within our script.

From there, we `map` over the Objects, turning each into a comma-separated string of

`date,low,high`.

This gives us all the lines of our CSV in an Array, each element of the Array represents one

line of the file.

Stream contents to file, line-by-line

`File` instances have an `appendLine` method↗ for writing data into them one line at a

time.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4769938149.html

lineslines..forEachforEach((((ww)) =>=> {{

 weatherFile weatherFile..appendLineappendLine(({{ valuevalue:: w w }}))

}}))

We already have our Array of `lines`, so we iterate over the Array with `forEach`, and

invoke `appendLine()` for each element in the Array.

“Note that `appendLine()` can only be used on Text or CSV file types, and each line can

be no more than 10MB. It is also not limited to new files. We can use this method to

load an existing file and append data to the end of it without disturbing the original

contents.”

constconst readFilereadFile == ((responseresponse)) =>=> {{

 constconst weatherData weatherData == [[]]

 constconst weatherFile weatherFile == f f..loadload(({{ idid:: 'SuiteScripts/weather.csv''SuiteScripts/weather.csv' }}))

 weatherFile weatherFile..lineslines..iteratoriterator(())..eacheach((((lineline)) =>=> {{

 constconst [[datedate,, low low,, high high]] == line line..valuevalue..splitsplit((','','))

 weatherData weatherData..pushpush(({{ date date,, low low,, high high }}))

 returnreturn truetrue

 }}))

 response response..writewrite(({{ outputoutput:: JSONJSON..stringifystringify((weatherDataweatherData)) }}))

}}

constconst weatherFile weatherFile == f f..loadload(({{ idid:: 'SuiteScripts/weather.csv''SuiteScripts/weather.csv' }}))

weatherFileweatherFile..lineslines..iteratoriterator(())

weatherFileweatherFile..lineslines..iteratoriterator(())..eacheach((((lineline)) =>=> {{

 constconst [[datedate,, low low,, high high]] == line line..valuevalue..splitsplit((','','))

 weatherData weatherData..pushpush(({{ date date,, low low,, high high }}))

 returnreturn truetrue

}}))

constconst [[datedate,, low low,, high high]] == line line..valuevalue..splitsplit((','','))

Read File line by line

Just as we can write to a file line by line, we can also read line by line:

Here we load the same CSV file as we created in the previous example:

`File` instances provide us with a `lines` Iterator↗ which we can use to walk the lines of

a File one by one.

The Iterator provides an `each()` method which will loop through the lines, passing each

line to the callback function we provide.

The `line` passed in is an Object, and you can retrieve the contents of the line from its

`value` property. Here we do a naive `split()`↗ on all commas where we assume none of

our column values contain commas.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4769955095.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/split

weatherDataweatherData..pushpush(({{ date date,, low low,, high high }}))

returnreturn truetrue

We use Array destructuring↗ to assign each element from the Array to a variable. This

allows us to use the shorthand syntax↗ for specifying Object properties next.

We then reconstruct the Objects we used initially when we defined `WeatherData` and

`push()` the Objects↗ onto the `weatherData` Array.

Your callback function can return `false` to stop or `true` to continue, similar to the way

the `each()` iterator works on Search Results. Returning nothing is the same as returning

`false`. If you find that your script is only processing the first line of the file, it's likely

because you forgot to return `true` here.

Note that the `lines` Iterator can only be used on Text or CSV file types, and each line can

be no more than `10MB`.

Why Stream?

It might not be immediately obvious why you would read a file this way. Why not get the

entire contents and get to work?

Files can be large; extremely large. Loading the entire contents of a huge file would

immediately consume the entire memory limit for your script. Further, you are presumably

going to do something interesting with each line of a CSV, and almost anything interesting

uses governance. Trying to process a massive file all at once is almost guaranteed to run

you into the governance limit for your script.

Instead, you can use this approach to process the file without pushing up against either of

these limits, allowing you to stop and check your governance threshold, store your

progress for next time, and react accordingly.

You can also use this as a preparatory step to processing large files, chunking them out

into smaller, more manageable file sizes.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#array_destructuring
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer#property_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/push

Recommendations and Resources

NetSuite Help

NetSuite Help is the most definitive reference for SuiteScript and all of its capabilities. I

recommend studying the following articles and any related sub-articles:

N/file Module↗

N/file examples↗

Iterators↗

The Records Browser

The Records Browser↗ is an absolutely crucial tool for creating effective searches. There is

a new version of the Records Browser for every version of NetSuite. The 2023.2 version

can be found in NetSuite Help↗.

If you are unfamiliar with the Records Browser, see SuiteScript Records Browser↗ in the

Help documentation and my tutorial.

Mozilla Developer Network

SuiteScript is a library on top of JavaScript, and the best JavaScript reference manual is the

Mozilla Developer Network↗.

While not related specifically to NetSuite, this site is an excellent source of JavaScript

reference material, examples, and tutorials.

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4205693274.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_157072584764.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_0831085754.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2023_2/script/record/account.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2023_2/script/record/account.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_1527577879.html
https://stoic.software/effective-suitescript/records-browser/
https://developer.mozilla.org/

About the Author

My name is Eric T Grubaugh. I run the Sustainable SuiteScript community for NetSuite

developers. I founded Stoic Software in 2016 to help others lead successful, sustainable

careers as NetSuite developers.

The "Sustainable SuiteScript" Community

We are a small community of NetSuite developers who want to deepen their technical

skills, expand their professional network, and raise the bar for SuiteScript development.

Join us today.

Questions, Comments, Corrections

If you have any questions, comments, or corrections on this document, please email them

to me at eric+cookbooks@stoic.software.

Get in Touch

The best way to keep in regular contact with me is to join the Sustainable SuiteScript

mailing list. I read and respond to all emails I receive there.

I create SuiteScript videos on YouTube.

You can also connect with me on LinkedIn.

https://www.linkedin.com/in/erictgrubaugh
https://www.linkedin.com/in/erictgrubaugh
https://stoic.software/community/
mailto:eric+cookbooks@stoic.software
https://stoic.software/
https://youtube.com/@StoicSoftware?sub_confirmation=1
https://youtube.com/@StoicSoftware?sub_confirmation=1
https://www.linkedin.com/in/erictgrubaugh
https://www.linkedin.com/in/erictgrubaugh

